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Abstract

The objective of this thesis is to demonstrate the feasibility of performing in-

terpretation, specifically static type checking, in a particularly modular way. We

use a term space of fixpoints of sums of functors so that, by writing individual al-

gebras for each portion of the entire language, we can then combine those algebras

into an algebra that functions over the entire target language. The overall compu-

tational style employed uses a sequenced paramorphism to reduce the terms to the

value space of types. As a proof of concept, this thesis presents a nominal type-

checker in Haskell for the language Rosetta. It relies heavily on InterpreterLib, a

Haskell library for designing interpreters in exactly the style described.
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Chapter 1

Introduction

1.1 Statement of Problem

Implementing language interpretation one feature at a time is a tantalizing ap-

proach, but can lead to considerable amounts of updating existing code, delaying

the addition of more functionality. The benefits of the smaller mental leaps can

be grossly outweighed by the legwork to account for integrating the next feature.

On the opposite side of the spectrum, implementing an entire complex language

interpreter in one step may simply be too difficult if the language is constantly

undergoing change. For a large enough system, choosing either extreme can be

overwhelming. As the needs of the language are recognized, the syntax or term

space of the language may be modified, extended, or retracted. Similarly, the

value space, or result of calculation, may also undergo modifications. The ability

to cope with change becomes increasingly more vital to the success and survival

of the project.

One of the ultimate goals in facilitating interpretation is modularity. For any

portion of the development process, the more we can generalize and separate com-
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ponents, the better prepared we are for change. We seek modularity in the term

space that an interpreter targets, as well as in the value space of the interpreter’s

results. Modularity is possible in the language’s semantics by breaking the lan-

guage down into smaller meaningful pieces, called semantic algebras. We also

benefit from a separation of recursion from the definition of the term space and

from the definition of evaluation.

This thesis shows an approach to interpretation utilizing modular monadic

techniques to allow for an organic, evolving interpreter that is not as susceptible

to many common issues inherent in a large interpreter based on an ever-changing

target language. We discuss the evolution of solutions to the common issues,

culminating in the present design. While many of these techniques have been

understood for some time, the combination of all the techniques discussed, along

with the code-generative aspects of InterpreterLib, leads to a systematic and more

streamlined process. This thesis is a realization of that process.

1.1.1 Defining the Language

Type checking is a common static analysis that is frequently performed by

interpreters. There would be no point in executing code or even compiling the

code to be executed, if there was no guarantee that the language’s semantics have

been obeyed. In order to present the issues involved in writing a relatively large

interpreter, a type checker for a subset of the Rosetta language is offered as a

proof of concept. An informal description of the components and concepts which

comprise the final interpreter is discussed here, to give motivation for the work.

First, I present the term space of the language, with respect to the representa-

tion and the likelihood of adding values to it. Issues with defining the term space
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recursively as one monolithic structure will be addressed by re-defining the term

space in terms of many functors. A functor is essentially a data structure where

the subterms have been identified explicitly as subterms, and are parameterized

so that a different carrier, or semantic space for the subterms, may be used at

different times, such as types during type checking, values during evaluation, and

terms themselves when defining terms. If we have functors for different semantic

parts of our language and combine them, then we obtain the overall language by

taking the fixed point of that combined functor. A sum type is a mechanism for

combining functors, and is a disjoint union.

A sum takes two functors, and labels them as being either the ‘left’ or ‘right’

functor, and then keeps track of which one is where (via types), for future ma-

nipulations. A sum of two functors is itself a functor, so any number of functors

may be combined in this nesting fashion, much like the standard Cons and Nil

definition of a list allows us to generate lists of arbitrary length.

Since functors give a non-recursive definition of the term space, we still need

to “tie the recursive knot” to gain the complete set of terms with something

called a fixed point. The fixed point of a functor is essentially the values possible

when the functor’s subterms, or carriers, are limited to values of the functor itself.

Obviously, there must be some values of functors which do not have subterms, or

we could never represent a (finite) term. In creating the term space for Rosetta’s

internal representation, we take the fixed point of the sum of all the functors used

to describe the language. In this fashion, orthogonal features of the language may

be defined separately, but still brought together for the chance to interact.

Each functor has a corresponding semantic algebra to analyze the set of fea-

tures it describes. An algebra is essentially the semantics of a functor’s definition,

3



therefore we can talk about the functor of some algebra. For instance, a functor

definition of If-Then-Else could have a corresponding algebra to state that the

guard statement’s value dictates which branch should be the result. Another ex-

ample is a functor with a term to represent addition, where the algebra indicates

how the two parameters should combine in the definition of addition. From a

programmer’s point of view, the algebras are the bit of code that define terms’

meanings. In the current work, that means there is a type checking algebra for

each functor in the representation of the language. Each algebra operates on just

its functor, needing only to know the type of the carrier set, known as the value

space. If the semantics of the overall language dictates that two algebras do need

to know details of one another’s functor, only that other functor must be dealt

with within the other’s algebra. Interactions only occur when they are necessary,

and in a tightly controlled fashion.

Each algebra assumes that the subterms have already been evaluated and

reduced to values. In order to accomplish this when it is quite likely that the

subterms are of other functors, we need an approach to apply the correct algebras

to the correct terms. We use the same structure for combining functors in order

to write algebras over those functors. This assures us that we can pattern match

the exact same labels to apply only the correct algebra to the correct functor.

The net result is that a collection of algebras and their collection of functors can

be combined to represent the algebra whose functor is the sum of all the functors.

Adding or removing parts of a language can be as simple as adding or removing

the algebra and functor from this summation.

At this point, we have the means to define a language with functors and to

define the semantics of them with functions over those functors to complete the
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algebras. We need some way to utilize these separate algebras in evaluating terms;

specifically, we need a recursion scheme to handle applying the algebras to the

correct terms. The two recursion schemes presented are the catamorphism and

paramorphism. The catamorphism operates on a term by first recursing to the

leaves of the term’s abstract syntax tree, and then retreating back up the structure,

determining the value solely by non-recursive portions of a term and the results

of sub-terms’ evaluations. The paramorphism is essentially the same, except that

the original content of the sub-terms is also made available. This change is only

necessary if the decisions of an algebra are based on both the original structure

and result of various sub-terms.

Algebras can also be sequenced, such that when the recursion scheme is work-

ing its way back up the term’s structure, the results of the first algebra are avail-

able to the second. A convenient example of the need for sequencing algebras is a

pretty printer that must annotate types while printing terms. The type checking

algebra can be run just before the printing algebra, which can then look at terms

to print them, but also add in types to the output.

Monads are a path to regaining side effects in a pure language, such as Haskell;

in implementing the Rosetta type checker, I use a monadic style, meaning that

algebras’ carriers will be monadic computations. The side effects achieved through

monads play directly into the structure of algebras. We still define semantic

algebras for the functors in a language and use the recursion schemes presented.

Monads essentially define the representation of a computation and rules for when

to perform that computation; this allows for localized side-effects, proving very

useful for handling topics such as scoping or universal quantifiers.

5



1.1.2 Benefits

We can make significant changes to the capabilities of the type checker without

effecting code upkeep. We add universal quantifiers, which allows us to create type

variables. This necessitates the collection of constraints and running a unification

algorithm on the results just prior to completing type checking. The only areas

affected are those that must be: any constraints that must be generated are done

in-place. Algebras that do not generate constraints are not affected. No extra

parameter is threaded through, and no systematic change is made. Algebras

which are entirely unaffected do not even need to change their type signatures to

include an unused monad. Algebras are implemented by functions that pattern

match over the separate terms of the associated functor, and each one can simply

bind the sub-terms to yield the monadic computation’s result and then combine

those results into the analysis implied by the semantics of that term.

As will become apparent, the monadic style of computation in functional pro-

gramming languages is an essential tool of the modularity of the overall design.

Although learning monadic programming styles can be daunting at first, there is

not too much to learn in order to get started, and once mastered, most would

strongly resist giving it up.

One major benefit of using monads is the ability to add new effects to the

computing capability by simply adding another monad into the mix. There exist

controlled ways–via monad transformers–to introduce more monadic effects with

minimal effort; it is very reasonable. Monads might well be loosely described

as a way to enforce the computing order of expressions by binding them in a

certain order; beyond that, they mostly add functionality by adding functions

associated with a particular monad to interleave with each successive binding,
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or by maintaining some kind of state implicitly. Haskell provides some built-in

syntactic sugar for monads, called do-notation. do-notation is really just a way to

list the bindings which will occur, giving a better visual appeal to a multi-nested

set of bindings.

The term space changes as more and more features are supported. In the

current work, the Rosetta language’s concrete syntax is mostly in stasis, yet the

internal representation constantly changes. After each milestone of support, more

advanced features are tackled. This involves expanding the internal AST as nec-

essary, expanding the type space as necessary, and so on. Yet with a modular

style, the effects should be as local as possible. Only the functors and associated

algebras will be affected, and then the algebra summation will pull it all back

together. This allows us to iteratively write the language itself. There is never

a single monolithic representation of all of Rosetta that must be reckoned with

at any point in time; one feature at a time can be added and tested. Thus is

comprised a particularly modular solution to interpreter development: modular

monadic semantics, fixed points of sums of functors for the term space, separate

algebras per functor for combination into a complete algebra, and sequencing of

algebras as necessary or convenient.

1.2 Contributions of this Thesis

The main goal of this work is to discuss the modular techniques available to

interpreter design, present solutions to the issues of development, and to provide

a large-scale functioning example. As the example utilizes the techniques heavily,

the majority of the discussion focuses on those techniques, and at that point

the end result–the Rosetta Type Checker–is essentially a showcase. I discuss the
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history of its development thus far, to illustrate the changes necessary in a real

application, and the extent to which these techniques were able to handle those

changes.

1.3 Organization

Section 2 gives an introduction to Haskell, with the view that the reader is

already familiar with some functional programming. Section 3 gives an introduc-

tion to what Rosetta is, but only to the extent necessary to motivate the type

checking example. In section 4, monads are introduced, as well as the usage in

Haskell. Then, functors (section 5) and Algebras (section 5.2) are introduced and

related; this sets the stage for the definition of a fixed-point and of a sum, to

motivate the term space’s shape as a fixed point of a sum of functors. Some en-

hancements are discussed (section 5.6), as well as common evaluation strategies

employed in an algebraic programming environment, namely catamorphisms and

paramorphisms (section 5.4). To utilize these in the current framework, I visit the

notion of combining algebras (section 5.3), as well as sequencing algebras (section

5.5). Further, an algorithm for gathering constraints on the type of some term,

and a unification algorithm to solve that system of constraints, is presented in

section 7.1.2. Lastly, a snapshot of the typechecker in its current state is visited

(section 7), to help see how all of this comes together, and then conclusions and

future work are discussed in section 8.
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1.4 Goals

This thesis presents a type checker (appendix A) for a subset of the language

Rosetta [2], as an example of interpretation in a modular fashion. The example

should motivate the flexibility of this style of programming of interpreters, both for

a language in flux and for a large language in general. The language is represented

as a fixed point of sums (section 5.1.3) of individual functors representing the

different aspects of the language itself. Algebras (section 5.2) corresponding to

each of these functors (section 5) are independently written, and then combined in

such a fashion that each algebra will be called upon exactly when its own kind of

terms are being evaluated; this pulls the algebras together into a single, combined

algebra (section 5.3). Furthermore, the type checker is written in a monadic style,

separating the different capabilities needed for different portions of the overall

language. It also gives much of the power and expressiveness available in functional

programming, while still preserving many of the properties guaranteed by a pure

language such as Haskell (section 2).

Significant additions to the language should be able to be added sequentially,

without significant overhaul of the interpreter’s code at any given point in time.

For instance, the addition of universal quantifiers requires the ability to generate

type variables, and to gather constraints and unify them (section 7.1.2). Using a

monadic computational style, we change no code except where universals are now

concerned; the state is implicitly woven throughout. Without monads, we might

have to explicitly add parameters in all code we eventually want to incorporate.

This weighs heavily on the readability of code, as much of this piping merely passes

values around, only to be used in the few instances we’d need to edit when using

monads. Simpler changes such as adding terms, reorganizing terms, or removing

9



terms, also lead to changes in just one algebra; even better, we may only need to

change the algebra-combination itself. As set as the concrete syntax of Rosetta is,

the internal representation is in a constant, gentle flux as its needs are identified

and solutions are found. The modular monadic algebraic approach for this type

checker is well-suited to these very real issues.
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Chapter 2

Haskell

Haskell [8] [13] [12] [7] is a pure, lazy, functional programming language. Fea-

tures such as higher-order functions, type classes (similar to common imperative

languages’ interfaces), strong type inference, and a call-by-need evaluation strat-

egy all are good reasons for much of today’s language research to be carried out in

Haskell, or else in languages with many of the same characteristics. The current

work is all performed in Haskell–the tools used and the analyzers written all use

Haskell in a modular monadic style.

2.1 Notions of Equality

In Haskell, the equals sign, =, is truly Leibniz equality. It implies that the

two entities on either side are equivalent and can always be substituted for one

another. Thus the concept of assignment is a moot point–we can state that a

variable name is equivalent to a value, but we cannot later in time state that

the variable is equivalent to a new value: Haskell will rightly complain that there

are multiple definitions for the variable. This property of equality is the cause of

11



Haskell’s stance on side-effects. Therefore, we will need some other mechanism

to realize side-effects if we want to use them in programming. Monads will be

introduced as a mechanism to regain side-effects in a contained fashion while still

being able to rely on Haskell’s purity elsewhere.

2.2 Purity and Side-Effects

Haskell is a pure language, implying that there are no side effects of any kind.

Any time you call a function with the same parameters, you will always get the

same results, no matter what. Of course, you can call a function twice with

different parameters, and then get different results. Purity in the presence of

monads will be discussed when monads are discussed in depth.

Examples of side effects are storing a new value to a variable at a specific

point in time, creating new variables, and user input / computational output.

Haskell’s laziness means that expressions are not evaluated until needed, and thus

any side-effects will be delayed until that point. Therefore, the simple idea of

print statements throughout code to report on values while progressing through

the code as well as values at those points is a tricky, if not impractical affair. An

actual parameter might be an expression, replacing all occurrences. Yet, if no

occurrence of it is ever explicitly used in the end result, it will never be evaluated,

causing no side-effects such as printing. Not only must you be certain that your ex-

pression is needed, understanding the exact order in which the interpreter chooses

to finally execute expressions can be tricky. Understanding laziness’ implications

is important.

12



2.3 Type Signatures

Haskell type signatures are indicated with a double-colon, followed by the type

itself, as in the following examples:

True :: Bool
not :: Bool → Bool

tertiaryAdd :: Int → Int → Int → Int
tertiaryAdd x y z = x + y + z

First, we see that a basic type is just given, in place. Secondly, we see a

function, named not, that takes in one parameter, that must be a Bool, and

returns another Bool. The arrow (→) indicates that the left side is a parameter,

and the right side is the resulting type after applying that parameter. Thirdly,

we see a function, tertiaryAdd with multiple arrows, meaning that we can apply

multiple values as parameters. This function could be called by applying any

number of its parameters, as in the following examples with their types annotated

(though usually they would not be). At the interpreter prompt:

terminal> tertiaryAdd 1 2 3 :: Int
6

terminal> let addNine = tertiaryAdd 4 5 :: Int → Int
terminal> addNine 6

15

At this point, parenthesization must be addressed. When parsing a type sig-

nature with your eyes, you must mentally insert parentheses between arrows to be

right-adjusted. For instance, look at the following type signature and its assumed

parenthesization:

Int → Int → Int → Int
Int → (Int → (Int → Int))

13



This is currying in action. Every function is simply a function of one param-

eter, that in turn can yield a function or a value. We see that applying more

parameters keeps reducing the type:

tertiaryAdd :: Int → (Int → (Int → Int))
tertiaryAdd 4 :: Int → (Int → Int)
tertiaryAdd 4 5 6 :: Int

Conversely, when applying expressions to functions, we must read with left-

most parentheses: func a b c should be read as (((func a) b) c). All the paren-

theses in the following block are optional, as they mirror the order of binding in

Haskell. Thus, with typing, if func :: (A →(B →(C →D))), then:

(func a) :: (B →(C → D))
((func a) b) :: (C → D)
(((func a) b) c) :: D

2.4 Functions as Values

Being a functional language, Haskell fully supports functions as first-class en-

tities: they can be used as parameters, they can be results, they can be anywhere

a traditional value is allowed. For instance, the map function is a higher-order

function that receives a function of type a → b, a list of a’s, and returns a list

of b’s. It applies the given function to each element of the list of a’s, and con-

structs the list of all the results as the list of b’s. Note that the map function uses

a function as a parameter, and furthermore, with currying, we could apply just

that function, and result in another function:

map :: (a → b) → ([a] → [b])
map f [] = []
map f (a:as) = (f a) : as

14



inc :: Int → Int
inc x = x + 1

incList :: [Int] → [Int]
incList xs = map inc xs

terminal> :t map inc --:t asks for the type of the expression

map inc :: [Int] → [Int]

2.5 Type Classes

One of the most powerful features of Haskell is the notion of a type class. A

type class is a mechanism for asserting that an arbitrary selection of types can be

used in certain ways. This is the same idea behind instances in languages such

as Java. Indeed, a type class is essentially a collection of functions that must be

implemented for any type which is declared to be an instance of that particular

type class. As an example, consider the type class Num. Num facilitates some basic

numerical operations, and we will consider a watered-down version for discussion’s

sake.

class Num a where
plus :: a → a → a
multiply :: a → a → a
negate :: a → a

This asserts that any type can belong to the type class Num, as long as instances

of plus, multiply, and negate exist for that class. For instance,

instance Num Int where
plus a b = a + b
multiply a b = a ∗ b
negate a = (--a)

15



This provides the actual definitions for the three functions, and now any time

a function’s type signature includes a type constraint such as Num a, Int may be

used in place of a. Consider another example:

class Ordered a where
lessThan, greaterThan, equals :: a → a → a

instance Ordered Int where
lessThan a b = a < b
greaterThan a b = a > b
equals a b = (a == b)

Any type can belong to the type class Ordered, as long as there is an instance

provided for lessThan, greaterThan, and equals. Integers are certainly ordered,

as the instance above shows.

2.5.1 Type variables

Type variables are simply variables that represent types. They show up in

a variety of languages, from templates in C++, generics in Java, and most ev-

ery functional language. Haskell completely distinguishes between its types and

values, as opposed to languages where the types are values themselves, such as

Rosetta or any language based on pure type systems [21]. We can use type vari-

ables in Haskell to parameterize a type. Here, we parameterize a List structure

over its contents, capturing the essence of a list without limiting it to be a list of

integers, for instance:

--instead of many separate lists types:

data IntList = ILCons Int IntList | ILNil
data BoolList = BLCons Bool BoolList | BLNil

--write one list definition:

data List a = Cons a (List a) | Nil
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We also see the syntax for creating data structures. We’ve created a new type,

List, expecting a type to replace all occurrences of a, generating a type such as

List Int or List Bool, which specializes the List code for that type. We see that

a type variable is simply a way to parameterize a type. Like a function call, we

must pay attention to how many parameters are needed to instantiate the function

call, or in this case, fully instantiate the type. Yet we should also view the type

variable as being a part of the type. List a is a valid type as long as there is a

type for a in context, just as x+y is a valid expression as long as there are values

for x and y in context.

Type classes are used to place constraints on type variables in a type signature.

When we don’t want to say that a type has to be something concrete, such as

Int or Char, yet we don’t want free reign such as given by universally quantified

types, we can include a Horn clause in the type signature:

sort :: (Ordered a) ⇒ [a] → [a]
sort (x:xs) = add lessThan x (sort xs)
sort [] = []

add::(Ordered a) ⇒ (a → a → Bool) → a → [a] → [a]
add f x [] = [x]
add f x (y:ys) = if f x y then x : y : ys else y : (add f x ys)

(Ordered a) requires that whatever is applied to this sort function, it must

be a list of things of a type with an instance for Ordered. Since we created an

instance of Ordered for Ints, we can call the sort function on a list of Ints:

terminal > sort [1,4,2,5,3]
[1,2,3,4,5]

Likewise, if we have an instance of Ordered for characters, then we could sort

a list of characters with the same sorting function.
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instance Ordered Char where
lessThan a b = a<b
greaterThan a b = a>b
equals a b = (a==b)

terminal> sort [’a’,’c’,’b’]
[’a’,’b’,’c’]

We have been off-loading all the real computation to Haskell itself–we are

not truly defining what equality and inequalities are for characters, we’re simply

relying on Haskell’s definition. Such is the nature of the example. Type classes

involving abstract data types are of course also able to off-load work quite often,

where we simply choose what part of the data to compare.

Type classes have a decent parallel to traditional imperative languages: Java’s

interfaces, and C++’s inheritance of classes containing only abstract methods (and

no instance or class variables) generate a similar effect. One important difference

to realize, however, is where changes are added. With type classes, we may create

an instance of an existing data type for an existing type class, and not change

either one. In Java (and similarly in C++), to add an interface’s methods to a

class, we must modify the class directly. Often, this poses no problem, but at

times, we want or need to leave the original source code alone, for instance due

to proprietary limitations.

What if we want to only assert equality for certain types, and ordering for

others? In this way, Haskell’s type classes can be used to create a hierarchy of

assured functionality. The above example is actually implemented in Haskell more

like the following:

class Eq a where
(==) :: a → a → Bool
x == y = not (x/=y)
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(/=) :: a → a → Bool
x /=y = not (x==y)

class (Eq a) ⇒ Ord a where
(<),(>) :: a → a → Bool

Notice that we can have a set of constraints in designing type classes–not just

for functions. This example above says, in effect, “in order to be an instance of

type class Ord, a type a must also belong to type class Eq”. Thus, any instance of

Ord may use the member functions of Eq confidently. If those Eq functions were

not instantiated for some type, then it is not well-defined. It either should have

been made an instance of Eq (to be Ord, it will need to have a concept of equality),

or else it does not belong in Ord (when no concept of equality is legitimate, then

ordering also makes no sense).

Another feature of type classes is default definitions. Notice that (==) and

(/=) are both defined inside the type class, where we’d normally see only function

signatures. As a result, we may create an instance of Eq by defining just one, and

the other is already created. We can always overwrite these default definitions;

any functions with available defaults may either be left out of an instance (and the

default used), or included to replace the default. Incidentally, some type classes

can be automatically derived (no instance clause is necessary to correctly generate

implementations for the functions). Eq, Ord, Show, and Typeable are some common

type classes which are derivable. Look at this data declaration:

data Tm = Num Int
| Add Tm Tm deriving (Eq, Show)

Eq of two Tm’s is simply a check for identical structure, as well as equivalent

Int’s where appropriate. (Add (Num 4) (Num 5)) does not equal (Add (Num 2) (Num 3))

despite having the same shape. However, we see that the expressions:
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(Add (Add (Num 1) (Num 2)) (Num 3))
(Add (Add (Num 1) (Num 2)) (Num 3))

are identical, and are equivalent. Similarly, show converts the structures into

printable form (a string) with a healthy sprinkling of parentheses. Not all type

classes can be derivable, and derivable classes can always have manually created

instances [12].
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Chapter 3

Rosetta

Rosetta is a Systems Specification Language being standardized by IEEE. It

allows for the specifier to design separate modules, called facets, and attribute

various model constraints and property constraints to those facets. Rosetta’s key

contribution is heterogeneity–specifications can be written using different seman-

tics for different components of the specification. A prominent goal is to be able

to reason about a specified system’s behavior and how its components interact.

Rosetta also offers capabilities for abstract modeling, more traditional structural

composition, and defining how different domains interact. Facets may be defined

in separate domains, such as state-based and continuous time, and the interactions

will be characterized by the domains from which the facets originated. There is

a wealth of information [2] beyond the brief description presented here. As this

thesis focuses on the feasibility of certain modular monadic techniques in writ-

ing interpreters, the discussion of Rosetta is mostly interested in describing the

language sufficiently to reason about its type checking analysis.

The scope of the entire Rosetta language is larger than necessary for the present

work. Here I focus on a subset of the Rosetta language, omitting all dependent
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typing, and restricting ourselves to type checking a single facet at a time. We

will handle all basic types in Rosetta terms–there are twelve numerical types (Bit,

Natural, PosInt, NegInt, Integer, Rational, Real, PosReal, NegReal, Imaginary,

Complex, Number), as well as Boolean, Char, String, and Element. We also

support functions, universal quantifiers, and the various parameters, declarations,

and terms of Rosetta Components, Facets, and other design units.

Let’s take a look at a Rosetta facet. We will then discuss its basic components,

a few details, and the basic requirements for a correct facet.

facet Simple (x,y :: input integer;
z :: output boolean) :: state_based is

a :: integer;
begin

t1: a = x - y;
t2: z = a > 0;

end facet Simple;

Figure 3.1.

Figure 3.1 declares a facet, named Simple, that has three parameters: x and

y are integers, and z is a boolean. Note also that x and y are inputs, while z is

an output. Facets are models of some system from a particular domain’s point

of view. They may have as many inputs and outputs as desired in the interface.

After the parameters section, we see the domain state_based. This indicates

that the facet will be defined under the basic rules of a state-based system, and

the syntax reserved for state-based concepts is now available. Specifically, the

state_based domain and all of its labels are available. Next, we may declare what

local entities we want. Here, we have only created a, which is an integer. After

begin, we see the specification portion, defining the logic of this facet. We have

two labeled terms. t1 asserts that a is equivalent to x-y, and t2 asserts that z is
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equivalent to a>0.

A facet may be parameterized over any number of inputs, outputs, and design

parameters; once fully instantiated, its type is its domain. But for it to be correctly

typed, its parameters’ types must exist, all declarations must be of valid types

and if instantiated, must be correctly typed expressions. Furthermore, all terms

must be booleans or facets. Boolean terms state properties that must hold–if

the properties don’t hold, the component is invalid in some way. Facets may

also include packages of other Rosetta items, but we are restricting ourselves to a

single facet for the current type analysis. Other Rosetta items may have further

assertions, implications, and requirements.

Rosetta allows functions to be used as first-class values; for instance, a facet

might input an integer a and a function f :: integer→boolean as parameters,

and use f a in a term. This allows for higher levels of abstraction, as more and

more general functions can be written in such a fashion and by combining such

functions. This gives Rosetta added richness of expression.

Full-fledged Rosetta has a dependent type system; our current work will omit

all portions of the language relying on dependent types. While we still can handle

universal quantifiers, this will simply mean that all our types will include only type

information, and will not include any non-type expressions needing evaluation.

There is still a significant set of specifications possible with this restriction on the

language, so this is not debilitating to our current discussion.

3.1 Internal Representation

Once a Rosetta file is parsed, it is represented with an internal abstract syntax

tree (AST). Essentially, it is a collection of functors (section 5) which are combined
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as a fixed point of the sum of them all; furthermore, in order to perform type

checking, an algebra for each functor with the carrier type of types themselves is

defined, and those algebras are themselves combined into one complete algebra.

All of these techniques will be discussed in detail in the following chapters; what

this means in a pragmatic sense is that all type checking is performed over this

abstract syntax, and thus we will be more focused on this internal representation

than the concrete Rosetta syntax itself. The discussions of algebras, functors, and

fixed points below are based on the assumption of using such a representation,

and thus while it may not look much like Rosetta itself, it is actually quite acutely

similar to the structure of Rosetta in this internal representation. The Rosetta

AST is called the NRast, or non-recursive ast.
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Chapter 4

Monads

Haskell is a pure functional language, and this gains us some good reasoning

about our code–at the expense of side effects. The category-theoretical concept

of monads [18] [26] [23] was found to be an excellent means of regaining those

computational side effects without actually sacrificing the purity of Haskell, nor

the functional style with its higher-order capabilities [11] [25] [24] [1] . Different

monads exist, and provide different side effects. Monads for maintaining state, for

providing context to a calculation, for recording results, or even for the possibility

of an error value are examples of common monads.

4.1 Definition

A monad is a functor along with two natural transformations, >>= (“bind”) and

return. Further transformations called non-proper morphisms may be defined,

and are the part where a monad becomes useful and unique from other monads.

In Haskell, monads are a part of the language itself, via a type class:
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class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b
(>>) :: m a → m b → m b
a >> b = a >>= (λ_ → b)

Note that >> is simply a variant of >>= that ignores the result of the previous

bind. Its usefulness will be revealed during the discussion of the State monad

(4.4.2).

In order to make a functor an instance of the Monad class, we need instances

of return and >>= for that functor. Consider this definition of a Maybe monad,

that has either a wrapped up value in it, or no value at all.

data Maybe a = Just a | Nothing deriving (Show, Eq)

instance Functor Maybe where
fmap f (Just a) = f a
fmap f (Nothing) = Nothing

instance Monad Maybe where
return a = Just a

Nothing >>= _ = Nothing
(Just a) >>= f = f a

fromJust :: Maybe a → a
fromJust (Just a) = a
fromJust (Nothing) = error "tried fromJust on Nothing."

Maybe is both a functor and a monad. We could have some sequence of opera-

tions we’d like to perform on a term, each of which could fail, The code would have

been messy originally, but now we have a systematic approach to indicate that a

computation could result in either a value or a failure, as well as a mechanism for

handling each. Note that >>=’s definition states that if an error is already present,

we simply return Nothing, yet if there is some value available, we unwrap it (with
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Haskell’s pattern matching) and apply the function, which itself may yield a value

or an error. A series of lookups into some structure would be ideal–we first try

to look up a variable in some context, then we search within it for some named

portion, search further for a sub-named portion, and then we return the portion

specified. The first three steps may have failed, and if so, we might as well stop

then.

lookupEnv :: String → Env → Maybe Tm
lookupTm :: String → Tm → Maybe Tm

find str1 str2 str3 env =
lookupEnv str1 env >>= lookupTm str2 >>= lookupTm str3

Note that if lookupEnv str1 env evaluates to Nothing, the definition of >>=

applied to Nothing will collapse the rest of the computation:

Nothing >>= g >>= h
=⇒ Nothing >>= h
=⇒ Nothing

So, if at any state we have an error, that error will propagate onward, and the

following computations will be omitted.

4.2 Syntactic Sugar for Monads

Writing code strictly in terms of >>= and return makes for some perhaps

inelegant code, as we see below. Haskell has some built-in syntactic sugar, the

do-notation, that can make code using monads more readable. The two following

sections of code are identical in meaning:

(return a) >>= (λb →
f b >>= (λc →
g c >>= (λd →
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d )))

do
b ← (return a)
c ← f b
d ← g c
return d

The effect is to bind the result of return a to the name b, then apply f to b

and bind the result of that to the name c, apply g to c and call it d, and lastly to

return d. The unique functions included with particular monads fit nicely into this

notation–they simply define one more line of the do-notation, sometimes binding

a value to a new name, sometimes performing tasks which do not rely on the

previous definition’s result. It looks strikingly like an imperative-style program.

While there is definitely no imperative action being performed, the mere act of

binding the different monadic computations in the order given does impose enough

restrictions that we can have some temporary side effects. The values bound to

names may affect how the inner computations behave. Once we leave the monad,

this simulation of side effects is done.

4.3 The Monad Laws

There is a set of monad laws [15] which all monads need to obey:

1. (return x) >>= f == f x
2. m >>= return == m
3. (m >>= f) >>= g == m >>= (λx → f x >>= g)

Rules one and two ensure that return is a left- and right- identity for bind,

and the third provides associativity (up to the introduced lambda abstraction)

for bind. Monads are used to represent computations without the notion of auto-

matically running them as needed. While evaluation is the difference between 2+4
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and 6, a monadic computation gives us the difference between 2+4 and the task

of adding 2 and 4. One is an expression that represents a value, while the other is

a representation of the computation that could be performed or passed around at

will. We later on define the meaning of “running” a monad, which then performs

the represented computation and yields the resulting value.

There is no mechanism in Haskell for mandating that these laws must hold

for a monad. It is the programmer’s responsibility to verify them whenever a

new monad is created. They are certainly safe to assume for all of the provided

instances of Monad in Haskell’s standard library.

While side effects may be possible in a sense within a monadic computation,

it is a contained environment. A monad run on the same values must still give

the same result every time, just as a function must return the same result if given

the same inputs. Thus, the purity of Haskell is not compromised by monads,

but we gain the ability to perform tasks such as error checking, or some stateful

computation, as we will see in examples below.

4.4 Some Common Monads in Haskell

Some of the most basic monads provided in Haskell are the Identity, State,

Reader, and Writer monads. A brief example usage of each is described, and the

basic operations particular to them is given.

4.4.1 Identity

The simplest monad is Identity, which merely does nothing to its contents.

Identity has only one constructor, and >>= and return each have only one cor-

responding pattern match; Identity also has no non-proper morphisms, meaning
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there is no added functionality associated with Identity. What’s the point? Just

as it is useful to have a Nil for lists or a base case for some induction, it is some-

times nice to include Identity, so that we can have a simple base case for any

disussion of monads in general. If we want to talk about monadic computations,

but not get caught up in the special features of any one monad, Identity can give

us a concrete example that can we can use in code. It can also serve as the bottom

of a stack or monad transformers as we see in the next section, 4.6.

data Identity a = Identity a

instance Monad Identity where
return a = Identity a
(Identity a) >>= f = f a

runIdentity (Identity x) = x

-------

terminal> runIdentity (Identity 4)
4

4.4.2 State

The purpose of the State monad is to allow the storage of some value, the state,

that can be either viewed or updated at any point during execution. The State

monad provides non-proper morphisms get and put, which return the current state

and take a value to replace the current state, respectively. Consider a simplified

definition of State and its instance of Monad:

data State s a = State (s → (s,a))

runState :: State s a → (s → (s,a))
runState (State f) s = f s
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instance Monad (State s) where
return a = State $ λx → (x,a)

(State a) >>= f = let (s’, a’) = f a in
State $ λx → (x, a’)

class MonadState s m | m → s where
get :: m s
put :: s → m ()

instance MonadState s (State s) where
get = State $ λx → (x,x)
put s = State $ λ_ → (s,())

data State s a = State (s → (s,a))

By itself, return results in a monadic computation that has already been

supplied a value for a, and is simply waiting for a state to pipe through into

the returned pair. Similarly, >>= uses pattern matching to ensure that the state

which is given to its first parameter, e.g. State a above, gets passed through to

its second parameter f, and finally passing the value generated by applying f to

the value from the first. With only >>= and return, State is doing nothing except

piping through state and then performing f x.

Another type class, MonadState, defines the non-proper morphisms that make

State unique and useful. The type class requires functions get and put, which

obtain the value in the current state and place a new value into the state, respec-

tively. Since put doesn’t pass a meaningful value on and merely modifies the state

that passes through it, it has the resulting type m (). () is ‘unit’ in Haskell, a

representation of a ‘don’t-care’ value. This is the perfect use of >> (refer to >>’s

definition above):

put 5 >> get >>= (λx → return (x+1))
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In 4.4.2, we see that put 5 :: m () has placed 5 into the state, and get :: m b

does nothing with the unit value resulting from put 5, which is exactly the situ-

ation where >> is appropriate. Since we are only interested in the side effects of

put 5, we can use >> instead of >>=.

A common use for state in interpreters is to aid generation of unique names

for type variables. We simply store a number in the state, and whenever we need

a new type variable, we get the number, increment it and put it back, and then

use that number as a suffix to the variable name.

generateSymbol = do
n ← get
put (n+1)
return (‘‘v’’ ++ (show n))

The order that monadic computations are performed will of course have an

effect on what value is available in state. Consider a tree-like structure of monadic

computations, where each node will obtain a number from state, increment it, and

then allow its sub-trees to run; this would be an in-order traversal for numbering.

If instead, each node bound its sub-trees and then obtained a number, this would

be a post-order traversal. It is important to note that after a monadic State

computation has been run, both the resulting value and the end state are available.

4.4.3 Reader

The Reader monad allows us to look at, but not modify, a value provided as

part of the environment. We can also use the Reader monad to create the value

to be used in the environment of further monadic computations, thus allowing

us to append to or replace the environments for subterms. Because we have not

actually changed the current environment, merely added on to the environment
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that the subterm sees, all modifications to the environment while in a subterm

cannot be seen from the term above it. For instance, a lambda abstraction can

add its variable to the current context to be used for the body of the lambda, but

the world outside the lambda has no notion of that variable. Since this pattern

of adding to and removing from a list of values so exactly mimics the concept of

context in type checking (or, for that matter, evaluation), it is quite common to

see Reader used to maintain the context during type checking operations. It may

contain something as simple as a list of variable/value pairs, to which we may

simply concatenate new parts of context, or it may be a more complex structure

with associated functions that we can use to assimilate more information, such

as a symbol table or some tree structure. We can store anything we want in

the Reader, but List-oriented structures tend to be the most common. Also, the

notion of context is so deeply linked to the Reader monad, that we often call the

associated value the context or the environment, even if we are not explicitly using

it for a context or environment.

Reader provides non-proper morphisms to get the current environment (ask)

as well as give an environment to another computation (local), indicating that

that computation should be run with the supplied environment. The function

ask is a monadic computation; it can be bound to a name, holding the current

context. local takes a function of type ctxt→ctxt, a monadic computation, and

yields a monadic computation. A common usage is as below. Assume the context

is a list of pairs of names and types, and that TypeMapping is the constructor for

arrow types:

typeof (Lambda name type t2) = do
env ← ask
t2’ ← local (const ((name,type):env)) t2
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return (TypeMapping type t2’)

The effect of this function eval is to get the current environment and call it

env; then, adding (name,type) to the current environment, run the body using

that new environment, returning the type from the domain to the range. const is

a Haskell function defined as const a b = a.

4.4.4 Writer

Writer is a monad that allows us to collect pieces of information at any time

throughout the computation. We can tell the Writer monad about more values,

that will be recorded in a regular fashion. It actually requires a monoid , which

has a starting value and a way of combining more values with it. Some simple

examples would be the value zero and addition; the value one and multiplication;

the value True and the operation &&. One common usage of Writer is to use the

empty list [] and the concatenation operation ++. The only non-proper morphism

of Writer necessary for our discussion is tell. tell takes another value and uses

the writer’s operation to combine that value with the pool of values already told.

The Writer monad’s usefulness in the current work arises with type checking

of universal quantifiers. Type checking universal quantifiers requires the creation

of type variables, which in turn requires the collection of constraints while travers-

ing the structure, and solving that set of constraints. For constraints collection,

whenever another constraint is found in some sub-term, it must propagate to be

included in the entire set of constraints. The unification determines (a) the type

of the term and (b) if it used its sub-terms in a type-safe manner. This is an

ideal use of the Writer monad. Whenever we come across another constraint, we

simply tell the writer monad of the new constraint, propagating it upwards from
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sub-term to super-term. When the monadic computation is completely run, we

will get not only the result, but also the total information that was told. For

example, telling pairs of necessarily equivalent types:

typeof (If b t1 t2) do
b’ ← b
type1 ← t1
type2 ← t2
tell [(b’,boolean),(type1,type2)]
return type1

The code above binds the results of computing b, t1, and t2, and then tells

the Writer that b’ must be of type boolean, and also that type1 and type2 must

be equivalent. It then arbitrarily chooses between type1 and type2, and returns

that as the resulting type of the entire If-expression.

4.5 Running Monads

Although the Monad class definition does not require it, almost all monads

come with a ‘run’ function, often having a signature T a → a for a monad T. The

concept of running a monadic computation is to ‘unpackage’ the contents using any

special rules implied. All of the side-effects obtained by using the unique functions

of a monad will be confined to the area inside the monadic computations. Running

a monadic computation with the same inputs will always get the same results,

despite there being a local scope in which side-effects are observable, such as state

being passed around. We demonstraite using a run function with a common usage

of the Reader monad, storing a list of (String,Val) pairs and writing a lookupV

function as below:

lookupV :: (Eq t) ⇒ t → [(t,a)] a
lookupV x [] = error "missing!"
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lookupV x ((z1,z2):zs) = if z1==x then z2 else (lookupV x zs)

term :: Reader [(String, a)] a
term = Reader (λ x → lookupV "s" x)

--example implementation of a runX function

runReader (Reader r) x = r x

terminal> runReader term [("r",4),("s",5),("t",6)]
5

terminal> runReader term [("r",False),("s",True)]
False

terminal> runReader term []
∗ ∗ ∗ Exception: missing!

4.6 Monad Transformers

We often want to use more than one monad at a time–perhaps utilizing Reader

for context, State for fresh variable names, and Writer for constraints. Thus, we

need to create a single monad that contains all the wanted monadic features at

once. By themselves, monads don’t interact and would have no idea what to do

with a monadic computation from a different monad. For instance, the Reader

monad has no means of handling State monadic values. We must combine the

monads in some fashion. And since monads are defined by instances of type

classes, we only need to create something that has all those instances defined. For

each monad, we can create a new monad which behaves essentially like the original

monad, except there is an extra parameter for an inner monad. For example, there

is the ReaderT monad, creating values of type ReaderT r m a, where r is again the

environment, m is the inner monad, and a is again the value generated by running

the monadic computation. Just as Reader r is an instance of Monad (leaving off

just the inner value space), ReaderT r m is an instance of Monad. Thus, we can

36



place a monad transformer into a monad transformer, stacking them as deeply as

necessary [10]. One task remains: we need to make available to the transformer

any of the non-proper morphisms from the interior monads, such as get and put

for State, ask and local for Reader, and so on. This is called lifting a function;

the signature for lift is seen in the class definition of a monad transformer:

class MonadTrans t where
lift :: (Monad m) ⇒ m a → t m a

All of the monads that are pre-defined in Haskell have implemented instances

of MonadTrans such as ReaderT r. Thus, when combining the provided monads,

lifting is fully supported. If we created our own monad to use with the provided

monads, we would need to define a way to lift those unique features of our monad

into any monad transformer that uses our own monad as part of its inner monad,

or vice versa. In practice, the monads that Haskell supports are sufficient for most

programming tasks, and the task of lifting between monads can often be bypassed

entirely, using the libraries’ definitions.

Running monads when transformers are involved simply involves running the

different monad transformers in the order in which you are nesting them. Just

as either an error or a list of values is different than a list of either errors or

values, running monads in the “wrong” order will possibly change the results (or

be impossible).

runIdentity (runReaderT (runStateT x (0,"")) env )

In the current work, using monadic computations has made for some relatively

simple constraints on type signatures. If a phi function needs to utilize some

particular monad’s side effects, then that function needs a constraint to state that

the monad in use (assumedly part of the phi function’s signature) contains the
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features of the needed monad. For instance,

phi_var :: (MonadReader Context m) ⇒ Lambda (m c) → (m c)
phi_var (Var x) = do

env ← ask
lookupEnv x env

Because phi_var needs to use the context, we added the constraint MonadReader Context m.

Any function using multiple monads simply adds a constraint for each one. When

algebras (specifically, their phi functions) are combined, the overall type is es-

sentially constrained by the union of all those constraints, which is precisely the

intention.
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Chapter 5

Functors and Algebras

The term space and value space of a language are quite likely to change often

during a language’s earlier phases of design. This can be particularly inhibiting

to an interpreter–any time we either extend an existing language or modify a

language, we have to reconsider all code involving the terms or values. Therefore,

we must explore ways of representing the term-space in a way that is open to

change with little to no modification. Similar issues arise in defining semantics

for those terms. We should maintain the code that gives terms semantic meaning

in a modular way, so that as the term space grows or changes, we can quickly and

clearly add or modify exactly the related portions of code, and nothing else.

Functors are structure-preserving mappings. For our purposes, we may use

a definition that states that a functor gives us a structure and a way to map

some function through it. The concept of mapping is separate from a particular

structure; we can map an increment function through a list of numbers or through

a tree of numbers. We could map an absolute value function through a list of

numbers, as well as through a tree of numbers or even through some user-defined

data type containing numbers, such as some simple term language. In essence, a
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functor is both the structure and the knowledge of how to push a function through

the sub-terms throughout that structure.

5.1 Functors in Haskell

In Haskell, a Functor type class exists that requires the single function fmap,

of the form:

class Functor f where
fmap :: (a → b) → f a → f b

The type used for f is the functor. That type is a functor because fmap can be

called on it, implying that a function can be mapped throughout its structure. We

could create any number of different structures, and make each one an instance

of functor by defining the appropriate mapping function fmap:

data List a = Nil | Cons a (List a)

instance Functor List where
fmap f (Nil) = Nil
fmap f (Cons a as) = Cons (f a) (fmap f as)

data Tree a = Leaf a | Node (Tree a) a (Tree a)

instance Functor Tree where
fmap f (Leaf a) = f a
fmap f (Node lb a rb) =

Node (fmap f lb) (f a) (fmap f rb)

data Tm a = Num a
| Add (Tm a) (Tm a)
| Mul (Tm a) (Tm a)

instance Functor Tm where
fmap f (Num i) = Num (f i)
fmap f (Add a b) = Add (fmap f a) (fmap f b)
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It is important to notice that the instance of Functor is List, and not List a,

for example. We would call List, Tree, and Tm functors, because they define

a structure along with an instance of fmap for pushing through computations

in that structure. They do not, however, define what is in the structure. We

could use Haskell’s default number implementation for Tm a, or we could design

our own system. Perhaps we want to represent numbers as Zero and Successor

of a number or Predecessor of a number. Perhaps we want to have a number

system which represents infinity and negative infinity specially, and so we’d use

separate constructors for those, and define the meanings of things like multiplying

something by infinity. We can then later change our choice of representation, and

not have to rewrite code involved in Tm itself.

Perhaps even more telling is List. We can define many powerful functions

over List, regardless of what is in the list. Being a functor, we can keep all the

details of how to manipulate lists entirely separate from how to manipulate the

contents of lists. Notice that fmap takes in a function of type a → b, and then

results in a function from the functor over a to the functor over b, or f a → f b.

The essence of fmap is to intelligently distribute the a → b function throughout

the functor’s structure, and the type signature beautifully maintains that. It does

not matter what a and b are, as long as their types are respected by the function

to be mapped.

5.1.1 Carriers

A functor’s contents is often known as the carrier of the functor, as the functor

describes the shape and the carrier is the type of values found within that shape.

If we have List Int, we have the functor List with carrier Int. List Char is
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again the functor List, now with carrier Char. Assuming a /= b, fmap has the

capacity to change the carrier of a functor. Just as a function of type a → b

may be seen as a transformation from values of type a to values of type b, fmap

may be seen as a transformation from functors with carrier a to functors with

carrier b, once the underlying transformation has been supplied to the structure-

preserving fmap. Carriers will be pivotal to the discussion of functors and algebras

combined—algebras will expect a certain functor with a certain carrier, and the

ability to combine algebras will greatly rely on the ability to share carriers.

When we define many separate functors, they each only know that “something”

will be placed in their carriers. Suppose we defined Tm as:

data Tm = Num Int | Add Tm Tm | Mul Tm Tm deriving (Show, Eq)

These data types are closed in the sense that we know that a Tm will only

consist of Num or Add or Mul terms. The fact that Add contains two Tms, instead

of two unknown things, is what limits them from being utilized in some larger

context easily.

We would like to see a more striated term space as shown below, separating

orthogonal concepts as much as necessary. Common groups of terms that often

show up in separate functors include basic mathematics, boolean logic with if-

else expressions, lambda calculus, and so on. Here, we show the separation of

mathematical operations and numbers from boolean terms and if-expressions as

a simple example:

data Math_F x = Num Int | Add x x | Sub x x

data Logic_F x = Tru | Fls | If x x x

instance Functor Math_F where
fmap f (Num x) = Num x
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fmap f (Add x y) = Add (f x) (f y)
fmap f (Sub x y) = Sub (f x) (f y)

instance Functor Logic_F where
fmap f (Tru) = Tru
fmap f (Fls) = Fls
fmap f (If a b c) = If (f a) (f b) (f c)

We need some means to combine Math_F, Logic_F, and assumedly many more

elements into the overall language. Also, we need to somehow enforce the recursion

between these elements. The idea is that we can replace any of the x’s with any

other term of a functor from the group we have in mind, and precisely only

those terms. The idea is first to collect the individual functors into one complete

functor (achieved with a construct called a sum), and then to ‘tie the recursive

knot’ and ensure that this collection of parts may recurse as deeply as necessary,

via a fixed point. We introduce both the sum and fixed point in the following

sections, and then introduce algebras to get a better motivation for the value

space. This organizational approach contains some significant hurdles to identify

and overcome at first, but the work of Duponcheel [4] and Hutton [9] are excellent

sources for gaining familiarity.

5.1.2 Sums of Functors

We need a means of combining multiple functors into one functor; the concept

of a sum is a concise, simple solution for this task. A sum is a construct which

contains either of two types of values at any given point in time, but not both.

For instance, numbers and booleans:

data Sum x y = Left x | Right y

type BoolsNums x = Sum (Math_F x) (Logic_F x)
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instance (Functor f, Functor g) ⇒ Functor (Sum f g) where
fmap f (Left x) = Left (fmap f x)
fmap f (Right x) = Right (fmap f x)

The sum of functors is itself another functor. The instance above provides

the appropriate fmap. Whenever we create a structure to combine functors, such

as Sum, the general instance of Functor looks slightly different. Notice that we

seemingly recursively call fmap on the right-hand sides; these are actually calls to

other versions of the overloaded fmap function. Sum’s task is simply to dispatch

the correct fmap, and this recursive calling is not the same as the recursion we’ve

been intentionally avoiding in the Functor instances for Math_F and Logic_F. In

general, we apply the function to carriers, and re-call fmap on any functors in

a term. For instance, we defined the constructor Cons x (List x), and defined

fmap over Cons as fmap f (Cons x xs) = Cons (f x) (fmap f xs).

5.1.3 Fixed Points

One ingredient is missing thus far– our terms are not recursive. We use the

well-understood concept of a fixed point to allow functors like BoolsNums to be

recursive. Keep in mind that if we wanted to actually use the functor BoolsNums,

we would have to supply its carrier type. We’ve tacitly assumed that BoolsNums

are themselves in BoolsNums, but to create a term, its type eventually needs to

resolve to something concrete, such as:

(Left (Add 4 5))::BoolsNums Int

(Left (Add (Left (Num 3)) (Left (Num 5)))) :: BoolsNums (BoolsNums Int)

At the bottom there is something non-recursive, and with our current capabilities,

terms such as Left (Add 3 (Left (Add 4 5))) have no correct type. 3’s place-
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ment indicates a type of BoolsNums Int, and 4’s placement indicates a type of

BoolsNums (BoolsNums Int). Unless every term is the same depth, we fail to cre-

ate a legal term. This is far too brittle and causes even more issues at evaluation

time. Instead, we need a type able to represent that BoolsNums may be included

inside itself, and actually be its own carrier when we create a term. Consider the

fix-point definition:

data Fix f = In (f (Fix f))

out (In x) = x

This says that the fixed point of some functor f is simply the functor with its

own fixed point as the carrier. The In constructor is simply there to allow us to

pattern match and to allow Haskell to be lazy and not require digging deeply to

the “bottom” of our recursion depth. out is simply a function which strips off the

In label. We can now create the fixed point of our BoolsNums functor:

type Lang = Fix BoolsNums

Of course, we could omit this, and simply use Fix BoolsNums whenever appropri-

ate. type merely creates a type synonym, thus either one is acceptable.

At this time, we have the final version of term space that we’ll need. We can

reuse any functors in a new sum, and we can tie the recursive knot with a fixed

point. We have a modular term space that can be appended easily by only editing

our functor sum, and we can reuse the individual functors concurrently in different

languages at once. Changes to any single functor are clear, and appropriately have

no impact on the other functors. We’ve separated the task of defining the terms

of a feature from the task of defining what features a language has.

45



5.2 Algebras

An algebra encompasses both a set of terms and operation(s) over those terms

and defines the semantics of the set of terms. In general, we use a functor to define

the set of terms, and a function to define the meaning of those terms. The func-

tion is often called a phi function, and has the type phi::(Functor f)=>f a→b.

Together, a functor and a phi function can comprise an algebra [3] [4].

5.2.1 Examples of Algebras

We explore a few basic algebras, learn their general structure, and then tie

algebras back to functors to motivate their usage. We continue with our Math_F

and Logic_F example as above. Consider the phi function below:

--recall, data Math_F x = Num Int | Add x x | Sub x x.

phi_MathF (Num n) = n
phi_MathF (Add a b) = a + b
phi_MathF (Sub a b) = a - b

The functor Math_F defines the chosen mathematical structures, and the phi_MathF

function gives the reasoning over those things. The same could be done for boolean

logic:

--recall, data Logic_F x = Tru | Fls | If x x x

phi_LogicF (Tru) = True
phi_LogicF (Fls) = False
phi_LogicF (If b t f) = If b then t else f

In both instances, the terms that are placeholders for values simply result in

the value (e.g. Num 5 ==>5, Tru ==>True, etc.), while the terms that contain more

complex meaning have to compute their results based on sub-terms’ values. We
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assume that all carriers, or subterms, have already been reduced to their values.

Thus, we can offload the work of addition, subtraction, and if-expressions to the

host language if it suits us. Consider the shape of the phi functions:

phi_MathF :: Math_F x → x
phi_LogicF :: Logic_F x → x

This exposes the general form of a phi function. The phi function’s parameter

is some functor with a particular carrier, and the function reduces that structure

down to some value in the value space. For a functor f with carrier c:

phi :: f c → c

We can therefore write one phi function for each algebra, and we then have a

complete and modular picture of the meaning of our terms. What we still lack is a

means to combine these phi functions for individual functors into one phi function

for the sum of those functors, and a means of providing the recursion scheme our

algebras require.

In the following sections, we discuss a means of combining multiple phi func-

tions into one combined phi function, expressly for utilizing our sums of functors,

and discuss the type of recursion schemes necessary to utilize these algebras. The

key to those recursion schemes is guaranteeing our assumption that the sub-terms

have already been evaluated, and correctly ordering the calls to the appropriate

phi functions. Keep in mind that even a single algebra and its functor would still

need some recursion scheme. We can apply the same recursion scheme to a sum of

functors and a sum of phi functions precisely because a sum of functors is itself a

functor, and as we shall see, a sum of phi functions behaves just like a phi function

over all the combined functors.
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5.3 Combining Algebras

Just as we broke the term space into many functors, we would like to write

separate algebras for each of those functors, and combine them in some fashion.

This gives us modularity in our semantics to exactly mirror the modularity in our

term space, allowing us to pick and choose what functors define the term space we

want, and then simply combine the respective phi functions. It turns out that the

solution for combining phi functions is quite similar to our solution for combining

functors–we use a sum structure.

Each phi function has a related functor, and we assume the functors are com-

bined in a sum as described above; therefore, we should rely on that ordering and

construct a way to dictate how to apply the correct function for the correct type

of value. funcSum, when partially applied with functions f and g, simply pattern

matches on the Left or Right label and applies the correct function. As we nest

more functors together in a larger Sum, funcSum can traverse right through and

navigate those same labels to identify the appropriate phi function.

data LM_Val = VNum Int | VLog Bool

funcSum f g (Left x) = f x
funcSum f g (Right x) = g x

phi_MathF :: Math_F LM_Val → LM_Val
phi_MathF (Num x) = VNum x
phi_MathF (Add (VNum x) (VNum y)) = VNum (x + y)
phi_MathF (Mul (VNum x) (VNum y)) = VNum (x ∗ y)

phi_LogicF :: Logic_F LM_Val → LM_Val
phi_LogicF (Tru) = VLog True
phi_LogicF (Fls) = VLog False
phi_LogicF (If (VLog a) b c) = if a then b else c

phi_LMF :: BoolsNums → LM_Val
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phi_LMF = funcSum phi_MathF phi_LogicF

We should stop for a brief moment and note that we are dictating what function

to apply manually, instead of using a type class to overload some Algebra class

with a phi function. In Haskell, multiple uses of the same functor for different

algebras becomes irksome. This method allows for easier use of algebraically

behaving constructs by not requiring the overloaded operator resolution to do the

work. In short, a solution involving type classes makes programming with algebras

more brittle, and as such we bar that path of discussion.

When we give phi_LMF a term of type BoolsNums LM_Val, that is a sum of

functors, then funcSum peels off the Left/Right labels and the appropriate phi

function is called. Note that ordering of the functors and ordering of the phi

functions should be the same, and that we strictly right-nest them. This works

no matter how many phi functions and functors we have. Consider the evaluation

steps in the case of three functors and three phi functions, named phi1, phi2, and

phi3:

phi = funcSum phi1 (funcSum phi2 phi3))

phi (R (R (Some term))) =⇒
(funcSum phi1 (funcSum phi2 phi3)) (R(R(Some term))) =⇒
(funcSum phi2 phi3) (R(Some term)) =⇒
phi3 (Some term)

As this step-through evaluation shows, the right-nested funcSums directly cor-

respond to the right-nested ordering of the functors in the sum for terms; thus we

can use the same algebra’s phi function and functor in different main phi’s, and

the means we use to construct those summed phi’s is the exact means we use to

tell what phi to apply.
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5.4 Recursion Strategies

Catamorphisms and paramorphisms are two mechanisms for simplifying data

structures. They take a regular structure, such as a list, any abstract data type, or

in the current work a Rosetta AST, and regularly reduce it to a single value. Both

catamorphisms and paramorphisms are ways to apply an algebra to a complex

term in stages. Functional Programming with Bananas, Lenses, Envelopes and

Barbed Wire [16] gives an excellent introduction to the concepts of catamorphisms

and paramorphisms, as well as anamorphisms and hylomorphisms.

5.4.1 Catamorphisms

A catamorphism [16] is a means of collapsing a structure into a single value. It

requires a function that dictates how evaluation of a term is performed, given the

values of its subterms. This is precisely the phi functions we’ve discussed. It also

requires there to be some terminal case, such as a functor with no subterms, or a

monoid’s identity element. The general approach is that the structure is explored

to the “leaves” of the structure, and then the values of subterms are calculated

and propagated back up the structure.

In the current work, the function to evaluate a term of some algebra once its

subterms have been evaluated is the phi function from the same algebra. Since we

have fixed points of sums for our terms, the catamorphism (cata) must first strip

off the In constructor, then propagate cata phi to all subterms via fmap. fmap is

structure-preserving, so at this point, we have that same functor’s structure with

evaluated subterms. phi may be applied, determining the value of the overall

term. Either this result is passed up further, or the evaluation is done.

cata :: (Functor f) ⇒ (f a → a) → Fix f → a
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cata phi = phi ◦ (fmap (cata phi)) ◦ out

The type variable a will actually be of the form (m val), where m is a monadic

structure, and val is the result of the analysis. For type checking, that can be

some special data type (e.g. data Ty =...), but for Rosetta, types are values of

the language itself, so we will have phi functions of the form (m Lang) →(m Lang),

where Lang is of course the fixed point of the sum of all functors involved. Since

phi is generating a monadic computation to be run later, we can manipulate the

environment of Reader, the value of State, and other monadic attributes. This

gives us the important ability to take information from one part of the term and

make it available for subterms below that point. It might have seemed that a

catamorphism would stop information from flowing down the AST. This would

be true if not for the delay introduced by returning monadic computations instead

of returning computed values.

A classic example of a catamorphism is the fold, also known as crush. Folding

implies reducing some structure to a single value (perhaps a sum, minimum, or

maximum, or a boolean describing whether or not some predicate always held).

Many list operations are folds, and therefore are catamorphisms. In fact, lists

have foldl and foldr defined for them already:

foldr :: (a→b→b) → b → [a] → [b]
foldr f base [] = base
foldr f base (x:xs) = f x (foldr f base xs)

foldl :: (a → b → a) → a → [b] → a
foldl f base [] = base
foldl f base (x:xs) = foldl f (f base x) xs

With base being the initial intermediate value, each fold operates from its re-

spective end of the list, and combines the intermediate value and end of the list into

51



a new intermediate value, traversing across the list until the list is empty. Below

is a small example of a functor, an algebra, and the code utilizing a catamorphism

to perform the evaluation. We use only one algebra to simplify the discussion,

but a sum of phi functions and a sum of functors are equally applicable with the

catamorphism as defined above.

data F x = Add x x | Num Int
| Tru | Fls | If x x x deriving (Show, Eq)

instance Functor F where
fmap f (Add x y) = Add (f x) (f y)
fmap f (Num x) = Num x
fmap f (Tru) = Tru
fmap f (Fls) = Fls
fmap f (If a b c) = If (f a) (f b) (f c)

data Val = Vn Int | Vb Bool deriving (Show, Eq)

phi (Add (Vn x) (Vn y)) = Vn $ x + y
phi (Num x) = Vn x
phi (Tru) = Vb True
phi (Fls) = Vb False
phi (If (Vb b) t f) = if b then t else f

eval:: Fix F → Val
eval = cata phi

t1 = In $ Num 3
t2 = In $ Num 5
t3 = In $ Add t1 t2
t4 = In $ Tru
t5 = In $ If t4 t3 t2

The definition of the functor F, the value space Val and the phi function phi are

all exactly as before. The catamorphism operates by pushing a function down into

the term, or AST, recursively into each successive layer, until the non-recursive

portion of the structure (where there are no subterms) is reached. This reduces

all the leaves, as it were, to single carrier values. Now, the terms just above

52



the leaves are ready for evaluation. The catamorphism’s recursive calls finish in

tail-recursive fashion, and thus the entire term is finally evaluated, with only a

non-recursive function and the catamorphism.

In the current work, the catamorphism handles type-checking itself; we want

to reduce a term into a single type, but that type depends on the types of the

subterms. Thus a typechecker may be an algebra which operates over terms

containing types as the carrier, instead of subterms. This algebra’s phi function,

combined with cata, allows us to type check any supported Rosetta term.

Monoids, briefly mentioned earlier (section 4.4.4), are structures that always

have an implied catamorphism. We pause briefly to explore monoids to better

understand the catamorphism and its usage. A monoid is an operation, along with

an identity value, that fully describes how to combine multiple values together.

Consider zero and addition; if we start with zero and add any number to it, we

get another number. Add that number to the next, and we get another number.

No matter how many numbers we sequentially add, we still end up with just one

number–the sum. True and && form a monoid, as do False and ||, 1 and *, and

[] and (++).

In all of these examples, the function has a type of the form f :: a →b → b,

and the identity element is of type b; quite often a = b. A monoid has a related phi

function by supplying the identity element for the second parameter at all “leaf”

terms, and subterms as the second parameter at all successive terms. While our

functors and algebras require a bit more packaging with sums and fixed points, we

still are just folding a structure into a single value. A catamorphism is sometimes

called a general fold, as we can take some structure and fold the structure in

repeatedly until we get one single value. Monoids are nice, simple structures that
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display this folding-in behavior.

5.4.2 Paramorphisms

Paramorphisms are strikingly similar to catamorphisms. The difference lies in

that a paramorphism keeps the structure of sub-terms available as well as their

values. Thus, any part of an associated phi function may now use the structure

and the results of subterms. If the carrier of a phi function were a pair of term and

value, we could actually mimic a paramorphism strictly using the catamorphism.

The general type of phi function will now have another parameter for the

unevaluated term itself:

phi :: Fix MySum → F a → a
phi self (F a) =...

It is a property of the Rosetta AST that things such as parameters are also

a part of the language. As such, if we were to look at a facet with parameters

in a strictly catamorphic point of view, these parameters would also be reduced

to nothing more than a type while typechecking. For this reason, type checking

has been migrated to a paramorphic style. Most of the typechecking has no

need for that self-inspection, and can simply ignore the self-parameter which the

paramorphism provides.

5.5 Sequencing Algebras

One analysis may depend on the results of another. Thus we find it desirable

to have the intermediate results of one analysis available to another algebra at

each node of a term. We might perform type checking and provide those results

at each sub-term to another algebra that relies on the type of terms to decide how
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to interpret terms. In the current work, one example situation is in providing the

results of type checking to an algebra that arbitrates between overloaded operators

such as +.

This introduces the concept of algebra sequencing. We would like to have

the results of one algebra available to the phi functions of another algebra for

every single sub-term. The first algebra should ideally need no knowledge that it

will be used in such a fashion. Of course, the following algebra will have means

of accessing the results of the first algebra–the approach here is to provide the

results as another parameter. The type of algebras used in a sequenced nature

should now be (for a Functor F):

firstAlg :: ⇒ F (m v) → (m v)
nextAlg :: ⇒ v → F (m x) → (m x)

One excellent learning example is to sequence an identity algebra with a cata-

morphic algebra. The result of the first algebra, the original term, is presented as

information available to the second algebra. We have a paramorphism defined in

terms of two sequenced catamorphisms–this is precisely how InterpreterLib defines

the paramorphism.

There is a slight increase in complexity when we combine separate components

of an algebra that is expecting some other algebra’s results to be sequenced to it.

We must thread a parameter through the components so that we are still creating

an algebra with the correct type signature as we’d always expect. Assuming we’ve

written individual algebras for nextAlg above named nextA1, nextA2, and so on,

we could continue in the same fashion as described later in section 6 :

alg v = (mkAlg (nextA1 v)) @+@ (mkAlg (nextA2 v)) @+@...

A greater gain is the ability to take an algebra that was not written with
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sequencing in mind, and then use it as the first part of a sequence of algebras, or

to use the same algebra in multiple sequences. A real example is the need to have

type-aware algebras in the generation of assembly instructions or the description

of hardware. Do we duplicate some part of the typechecking process to find the

values we need? No–that would mean we have multiple places that the semantics

of typechecking has been defined, leading to difficult code to maintain. With

the ability to sequence a typechecking algebra before the code that decides how

many bits wide a MUX needs to be, or what version of an overloaded operator to

dispatch, we can use the exact code written for typechecking. If they are in co-

development, then the changes to the typechecking algebra would be immediately

available to the following algebra. Note that sequencing one algebra with an

algebra expecting to be sequenced results in another normal looking algebra; at

this point, algebras may be chained together as far as desired or necessary.

To understand this, consider the recursive scheme of a catamorphism. The

first action is to push the evaluation function down through subterms and let the

subterms percolate back up, evaluating results based on subterms’ results. In

sequencing two algebras, we should think of both algebras as performing the first

step (fmap pushing a function through the functor’s structure). At this point,

the first algebra lets the subterms’ resulting values be passed up a level and then

evaluated. This result is passed to the second algebra in determining its value at

that level. The first algebra must always keep ahead of the second algebra, but

does not need to completely finish before the second algebra can be begun. This

relates to the concept of a fusion law [16].
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5.5.1 Fusion Laws

Fusion laws determine when two transformations of a structure can be com-

bined, or fused, into one transformation. They allow us to combine two passes

through a data structure into one. While not strictly necessary for computation,

the fusion laws give solid mathematical reasoning to an optimization of evaluation.

Performing fewer transformations on a structure leads to less traversal, and hence

less work in general for a computation. Consider the two following functions:

f x = 5 ∗ x
g xs = foldr (+) 0 xs

We consider mapping f to a list (which results in a new list), and then applying

g to the resulting list (which results in a single number). We can see the evaluation

progress:

g (map f (Cons 1 (Cons 2(Cons 3 Nil)))) =⇒
g (Cons (5∗1) (Cons (5∗2) (Cons (5∗3) Nil))) =⇒
g (Cons 5 (Cons 10 (Cons 15 Nil))) =⇒
foldr (+) 0 (Cons 5 (Cons 10 (Cons 15 Nil))) =⇒
(1∗5)+((2∗5)+((3∗5)+0)) =⇒ 30

But couldn’t we also have thought of it as inserting f into the definition of g,

and then applying this new version of g?

f ( g (Cons 1 (Cons 2(Cons 3 Nil))) ) =⇒
f ( foldr (+) 0 (Cons 1(Cons 2(Cons 3 Nil)))) =⇒
foldr (λx y → (f x)+y) 0 (Cons 1(Cons 2(Cons 3 Nil))) =⇒
((5∗1)+((5∗2)+((5∗3)+0))) = 30

Using Meijer’s syntax [16], for a function f and a catamorphism (|b , ⊕ |) to

be capable of fusing into (|c , ⊗ |) , the following must hold:

f ◦ (|b , ⊕ |) = (|c , ⊗ |)
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⇐

(f b = c) ∧ ((f (a ⊕ as)) == (a ⊗ (f as)))

Essentially, a fusion law dictates when it is acceptable to combine two separate

passes of a structure, fusing the two traversals into one. Notice the base case must

be transferred, and then the recursive cases are either given first to f or else the

entire result is passed to f, and the same result should always occur.

With respect to the current work, we have not verified whether a fusion law

for sequencing algebras exists. The main question is whether the monadic com-

putations of the first algebra have already been run, or merely constructed. Do

different monads behave differently under these circumstances? Hopefully the

monadic behaviors of algebra sequencing can be more solidly understood. For

now, static analyses are certainly safe. It does not matter whether the monadic

computations of the first algebra have been run ahead of time or are run in lock-

step, or indeed even re-run, as there is no problem with this evaluation being

eager or lazy. In short, while this is an open question, its result does not affect

the validity of our results.

5.6 Injection and Projection Techniques

Defining the term space as a fixed point of a sum of functors makes for very

useful but sometimes ungainly terms. We briefly discuss an approach for simpli-

fying the usage of such a term space, to contend that it is a feasible approach.

We create functions to correctly package terms into the fixed point of the sum

of functors, as well as functions to correctly un-package them from that same

structure.

For example, we might see something like this:
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tm1 = In(Right(Add(In(Right(Num 4)))(In(Right(Num 5)))))

What is worse is if we were to significantly modify the structure of our sum,

as we remove or add functors to our sum, code containing a pattern match may

rely on the number of nested Rights there are. What we need is a function to

handle the addition and removal of the correct labels. The usual names for these

functions are inject and project, or inj and prj. We also often want a function

to help in the creation of terms; here, they are pre-pended with make. There will

tend to be one make function for each constructor of each functor. Initially, if we

had a fixed point of a particular sum, we could create these functions as such:

data F1 x = F1 Int
data F2 x = F2 x
data F3 x = F3 x x
type MySum =Sum F1 (Sum F2 F3)

-- functor instances omitted here...

makeF1 :: Int → Lang
makeF1 x = In (L (F1 x))

injF1 :: F1 (Fix MySum) → MySum (Fix MySum)
injF1 x = L x

prjF1 :: MySum (Fix MySum) → (F1 (Fix MySum))
prjF1 (L x) = x

makeF2 :: Fix MySum → MySum (Fix MySum)
makeF2 x = R (L (F2 x))

injF2 :: F2 (Fix MySum) → MySum (Fix MySum)
injF2 x = R ( L x )

prjF2 :: MySum (Fix MySum) → F2 (Fix MySum)
prjF2 (R(L x)) = x

For a simple enough system, this is not a terrible solution. Now we can use

59



the prjX functions to unwrap a value without laboring over the extra constructors

in particular. If we modify our sum, we would have to modify the definition of

these projection functions as well, but the code using them has the abstraction of

a function call to save it from needing to be re-written. Even better, if we tried to

project the wrong type of value in it, we would get a non-exhaustive pattern error,

so Haskell itself wouldn’t let us try to prj3 a F2(Fix MySum) value. While every

single prjX function has the same-type single parameter, they return differently

typed values; hence, our supplying only one pattern-matched version means we

are only writing the code for the times when it should be used.

5.6.1 Using a Type Class for Injection and Projection

Using individual functions for projection makes for a simple, usable solution,

but there is room for even more generality. Using a type class, we can create

one function that gets overloaded, relying on Haskell’s type system to infer what

instance of projection or injection is appropriate. Even though there will be a

different type involved while removing every single constructor, there will always

be a definition for inj or prj.

class SubType f sum where
inj :: f a → sum a
prj :: sum a → Maybe (f a)

instance SubType f (Sum f g) where
inj x = L
prj (L x) = Just x
prj (R x) = Nothing

instance (SubType f g) ⇒ SubType f (Sum e g) where
inj x = R $ inj x
prj (L x) = Nothing
prj (R x) = prj x
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If we had a language Lang as a fixed point of a sum, we can strip off the fixed

point constructor In, and then project to the individual value of type f Lang. As

long as we ascribe it a type, we can pattern-match using the Just constructor and

remove the In and all R’s and L’s without re-writing code to do so. Similarly, to

build a value we inject, ascribe a type, and then use it as we want.

terminal> (inj (F1 5)) :: MySum (Fix MySum)
In ( L (F1 5) )

terminal> let x = In ( inj (F1 5) ) :: Fix MySum
terminal> prj (out x) :: F1 (Fix MySum)

Just (F1 5)

terminal> fromJust (prj (out x) :: F1 (Fix MySum))
F1 someval

There are instances where the ascription is not needed. If the result is to be

used somewhere, or for instance is immediately used in pattern matching, then the

type will be inferred from the usage, giving Haskell the necessary type information.

Finally, we can inject terms into and project terms out of the sum with inj

and prj, and we can get into and out of the fixed point via In and out, without

reference to a particular series of application of constructors. We are free to change

the sum or use a functor in multiple sums and are not required to manually

construct projection functions for each particular usage–the instance is always

available from the general instances. The choice of term space now places no

extra burden on changing or repeated usage. The exact same approach is possible

with the value space–a value space may be a fixed point of a sum of values, and

projection and injection functions may similarly be defined. In summary, the

effort of encoding the boxing and un-boxing of values into a conglomerate type

is pushed almost entirely onto the host language, with a few simple instances
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and overloaded functions. This makes for a significantly robust representation of

terms, such that portions may be added or removed at only a high level, leaving

the details to be automatically derived.
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Chapter 6

InterpreterLib

6.1 Introduction

InterpreterLib [27] is a library of Haskell code to aid in the creation of inter-

preters in the modular monadic style. It is an implementation of the techniques

discussed thus far. InterpreterLib facilitates the creation of functors and algebras

over those functors. It also provides code generation support for implementing

various techniques such as combining algebras, combining functors, and project-

ing or injecting terms and values. Many of these techniques rely on specific data

structures for a sum or fixed point, and utilize type classes to provide instances

of the provided functions.

The programmer writes the functor definitions and phi functions for those

functors. Then the programmer uses pre-defined operators to combine those phi

functions and to combine the term space of a group of functors. Then, the pro-

grammer uses pre-defined operators to sequence multiple algebras, if necessary,

and define evaluation patterns as catamorphisms or paramorphisms. The legwork

of creating type classes for the meaning of a functor, an algebra, and projectable
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and injectable term spaces is complete; sums, fixed points, recursion schemes such

as catamorphisms are defined to operate over these structures. Algebra combina-

tors are defined to facilitate sequencing, switching between, and updating algebras.

By running the code generation phase on a functor definition, the programmer

gets to focus on the semantics of the different portions of the language instead of

the implementation of approaches to defining the semantics. The modularity of

the approach is exactly as has been described in previous sections. An algebra

may be used in many other combinations of algebras without touching the original

code.

That is not to suggest that the programmer is oblivious to all that is happening

under the hood. A solid understanding of the meaning of a term space as a

fixed point of a sum of functors, the recursion scheme of catamorphisms and

paramorphisms, and indeed even the meaning of a functor and an algebra are

all indispensable for the usage of InterpreterLib. The true benefit is the ability

to have generated what boilerplate code is necessary for the modular monadic

approach, and to isolate the definition of the semantics.

6.2 Example Usage

Following is a basic utilization of InterpreterLib. We will show three separate

algebras for basic mathematics, basic logic, and one for a unit term. We will

learn how to define the functors, generate the boilerplate code, write the phi

functions, and combine them into a single algebra that encompasses all three

functors’ semantics as a whole. This not intended to be a complete tutorial on

InterpreterLib; rather, it provides an example of the functionality available. There

are more thorough descriptions and discussions of InterpreterLib [27].
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6.2.1 Creating Functors

First, we will create a description of the functors, each as separate data struc-

tures. Unlike the descriptions of functors we’ve been working with, this contains

Haskell data structures that define the terms in a recursive format. The functors

themselves are generated in the next phase.

module Rast where

data MathF = Add MathF MathF
| Sub MathF MathF
| Num Int deriving (Show, Eq)

data LogF = Tru | Fls
| If LogF LogF LogF deriving (Show, Eq)

data UnitF = Unit deriving (Show, Eq)

6.2.2 Generating Boilerplate

Next, we call upon the code generator, algc, to create the functors themselves,

as well as any instances of type classes necessary. Depending on what an algebra

will be used for, there may be a need for other instances. For this small example,

we will simply ask for all possible instances. We first supply the file, then define

what the name of our termspace should be (i.e., the name for the fixed-point of

the sum of functors), a name for the file containing all the functors and instances,

and finally what instances should be generated.

The file ‘Lang.hs’ contains the sum of functors and fixed point of that sum.

We could have created this manually. If we want to create extra uses of the same

functors, we may find ourselves doing just that. ‘Make.hs’ is the series of functions

used to construct the terms with all the appropriate nestings of Lefts and Rights
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for the sum, as well as the fixed point label. Conveniently, the naming scheme

of prepending ‘mk’ to each means that terms created in this fashion are nearly

the same as terms created for the original recursive definition, but with a lot of

‘mk’s tagged on everywhere. A critical effect of this file is to assign types to

the make functions, when constraints are involved; otherwise, Haskell would not

know what type to use when a sum is found, and the type ascription would be

mandatory down the road. Lastly, ‘NRast.hs’ contains the functors and all the

required instances of type classes.

6.2.3 Writing the Individual Algebras

At this point, we are done with both the definition of the terms we need for our

language and all the boilerplate code to utilize the framework of InterpreterLib.

We now need to write the phi functions to define the semantics of our algebra.

Since we have various value types we’d like to return, we need to create a type that

encompasses them all. This could be done with a new data structure, as below,

or with an Either type, or the value space could even be its own fixed point of a

sum of functors, if it suits us. There is significant leeway in the value space, and

as such we have not needed to discuss it in much detail.

module Evaluator where

import Regular.Algebra(@+@,mkAlg)

-- to let us run our hardly-monadic code

import Control.Monad.Identity

-- import all the functors we made

import All

data Val = VNum Int | VBool Bool | VUnit deriving (Show, Eq)
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phiMath(Add x y) = do
(VNum x’) ← x
(VNum y’) ← y
return $ VNum $ x’ + y’

phiMath(Sub x y) = do
(VNum x’) ← x
(VNum y’) ← y
return $ VNum $ x’ - y’

phiMath(Num x) = return (VNum x)

phiLog (Tru) = return $ VBool True
phiLog (Fls) = return $ VBool False
phiLog (If b t f) = do

(VBool b’) ← b
if b’ then t else f

phiUnit(Unit) = return VUnit

6.2.4 Combining Algebras

Now we can combine the algebras into one algebra. We have not yet created

any association between algebras, so there is no collective structure that can han-

dle the semantics of mathematics, logic, and unit all at once. Just as we created

the fixed point of the sum of functors to combine the term space, we will do so for

the phi functions. It is essential that we respect the order that we added them to

the sum. By convention, InterpreterLib adds them alphabetically when you ask

for it to generate the sum for you. @+@ is the operator for combining algebras. We

also define evaluation as a catamorphism of the algebra.

alg = (mkAlg phiLog) @+@ (mkAlg phiMath)
@+@ (mkAlg phiUnit) @+@ funitAlg

evalM = cata alg

eval x = runIdentity ◦ evalM

t1 = mkIf (mkTru) (mkNum 4)
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(mkAdd (mkSub (mkNum 5) (mkNum 4)) (mkNum 1))

Notice that we added funitAlg to the end of our sum; InterpreterLib puts

this end-of-the line placeholder functor at the end of our sums when we ask for

it to generate the sum for us. All of our functors are used in similar fashion

(none are the ‘end of the list’), making the code for InterpreterLib more robust.

mkAlg is a function that helps InterpreterLib understand that the phi function

is part of an algebra in the mathematical sense, and thus can be used as such

with the code in InterpreterLib. It was created by a newtype Algebra, to en-

sure that apply may be called on the result, and thus cata’s definition can now

use this particular phi function when it sees the correspondingly correct type of

functor. evalM creates the catamorphism with our combined algebra; its type is

evalM::(Monad m)=>Lang→m Val. eval runs all the monads we use (none, in this

case, so we only run Identity to get to the value) on the monadic result of evalM.

evalM and eval are usually written together in some fashion–I’ve split them up to

show the two distinct tasks of creating the catamorphism and running the monads

to perform the monadic computations that result. All that remains is to use the

evaluation, such as :

terminal> eval t1
VNum 4

6.2.5 Further Additions

To add to this language, we would: (1)write the new pieces of the term-

space into the ‘Rast.hs’ file; (2) re-generate the boilerplate with a call to algc;

(3) write phi functions for the new pieces; (4) add (mkAlg phiNewstuff) into

alg; and possibly (5) update eval if we used more monads. Notice we have not
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edited the original phi functions, we gently edited alg, and we could never escape

writing the new termspace parts or phi functions. We also did not have to write

more boilerplate code. If we were more careful about the location of the original

definitions of the termspace, we could have avoided regenerating the pre-existing

boilerplate code. The results are excellent– modularity is preserved, and yet the

tasks required for changing the language are straightforward and natural, requiring

change practically only where actual change is truly desired.
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Chapter 7

The Rosetta TypeChecker

The Rosetta type checker [22] is an interpreter in the modular monadic style: it

consists of algebras for all individual functors for representing Rosetta terms. The

resulting algebra evaluates terms to type values by using the recursion schemes

discussed in section 5.4. We discuss further implemented capabilities as well. As

presented, the Rosetta type checker handles basic expressions of the language, as

well as the basic design units. This means that an individual facet or component

may be type checked. The type checker does not allow the type checking of

multiple modules; this is a subject of future work. Similarly, dependent typing

is not implemented. The current implementation still represents a large enough

piece of software to exhibit the techniques that this thesis must demonstrate.

7.1 Development History

The original type checker handled the most basic of terms using a unique value

space (e.g., data Ty =...). More and more of the Rosetta language constructs were

added, including functions and the design units themselves. During this period,
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the built-in standard environment of the language was simply hard-coded into the

initial environment. Overloading only exists in Rosetta for the base types such

as in addition of the various numerical types; there is currently support for sub-

typing in the type checker for those basic types. The result of the type checker

will eventually be sequenced with another algebra to annotate the entire term

with their types, and then arbitrate between versions of the overloaded operators.

This is more a necessity for evaluation and thus has not yet been a focus in type

checking. Also, with sequencing of algebras considered one way to break up a

task into phased tasks, this is merely an instance where a new feature will be

implemented orthogonally to the current work.

7.1.1 Using Paramorphisms

The Rosetta type checker utilizes a paramorphic recursion scheme. With the

addition of facets, Rosetta parameters that exist in their own functor brought up

another issue: what if we need to look into a structure to find names to add to the

context? Since a parameter is represented by another functor, by the time a facet is

looking at its parameters to look for names to add to the context, those parameters

have already been evaluated into (monadic computations yielding) types, and the

original information is gone.The type checker used a catamorphism initially, and

in order to solve this problem, the type checker initially changed its carrier into a

tuple containing both the resulting type as well as the re-constructed term. Since

a catamorphism is a ground-level-up recursion scheme, we can utilize the exact

same constructors that create terms to build a term with only its own constructor

and the already complete sub-terms’ constructed terms. In this way, we had an

implementation of a paramorphism, which is more appropriate for the design of
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the Rosetta language. It was functional, and certainly added more functionality

to the language, but it was also a brittle approach. Every sub-term would bind

to a tuple, and those terms had to be manually constructed at every single return

statement.

This manual piping of values looks quite similar to the piping of values in

non-monadic interpreters, and is a wonderful clue to the fact that it can be

done in a better, cleaner style. Eventually, InterpreterLib could provide support

for paramorphic recursion schemes by sequencing an identity algebra with the

paramorphic algebra itself. Instead of finding the sub-terms’ original structure by

examining the tuples resulting from binding the sub-terms, we now have the entire

term’s original structure as a parameter to the phi function. We can now omit all

code that simply passed through the structure, and use a carrier more appropriate

to the task of type checking. Type checking does not return a pair of term and

type, it returns a type. The capability to handle terms requiring a paramorphism

should not require us to change the carrier, and the current approach achieves

this. Utilizing the InterpreterLib implementation of a paramorphism gives an in-

terpreter greater flexibility in a concise style of coding, without the pitfalls and

fragility of manually providing such capabilities.

7.1.2 Constraints Collection and Unification

Constraint-based type checking [19] [6] [17] [20] is a method to allow the in-

troduction of new type variables to define relationships between types without

directly expressing what those types must be. The representation of a type by

naming it allows the name to show up in multiple places, indicating that whatever

type it is, it must be equitable in every place. Such a type is called a universal
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type, and allows Rosetta to define a richer set of terms. For instance, we could

define a list structure without defining what the contents of the list are, and thus

create concatenation, head, tail, and many other functions over lists without re-

quiring an implementation for lists of integers, and again for lists of booleans, and

again for any other list needed. In order to represent universal quantifiers in type

checking, we use type variables to abstract the actual type from a representation

of what the type will be. In order to resolve type variables, we collect constraints

on type variables and solve the set of constraints.

Unification (in the type checking realm) is the process of solving a set of

constraints to determine a value for each type variable. By unifying a set of

constraints, we can determine the exact type of a term, up to all constrained

variables. This means that universals will still be unconstrained, but all basic

types that are implied will be in place.

7.1.2.1 Constraint Sets

A constraint is either an equality requirement (type A is equivalent to type

B) or a subtyping requirement (type A is a subtype of type B). A constraint

set is simply a collection of these constraints. A constraint-based type checker

will generate a constraint every time some assertion or contract must be obeyed.

For instance, an if-expression generates two constraints: (i) the left and right

branches must be of the same type; and (ii) the conditional must be a Boolean.

Sometimes, no constraint needs to be generated. For example, we know that True

is of type boolean, and nothing else needs to be checked. In general, constraints

generated by an expression will be the union of the sub-expressions’ constraints

with any newly generated constraints. This process passes constraints up the
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chain from subterms to the top-level terms, whether it is a single expression, an

entire program, or perhaps a collection of Rosetta components.

7.1.2.2 Solving Constraints

Once the constraints of a term have been collected, we should have enough

information to determine a type of the top-level term. If type variables still

exist, the type variables represent universal quantifiers. We only want to solve

the constraints at the top level term, as portions of the constraints may not be

solvable on their own. We can solve a system of constraints by applying a few

rules of reduction and substitution to remove all constraints: (i) we can remove

all redundant constraints, such as “A is equivalent to A” and “B is a subtype of

B”; and (ii) if a type variable is required to be equivalent to some type C, we can

substitute C for that type variable throughout the entire set of constraints, often

leading to more available rule applications. Consider the set of constraints:

C==Boolean, D==Boolean, C==D

We can consume the first requirement and replace all occurences of C with

Boolean (via (ii)), to get:

Boolean==Boolean, D==Boolean, Boolean==D

and then remove the constraint Boolean==Boolean (via (i)). Similarly, we replace

all occurences of D with Boolean (via (ii)), to get:

Boolean==Boolean, Boolean==Boolean

Thus we have redundant constraints that can be dropped (via (i)); with no

constraints remaining, we have solved the set of constraints. As long as we also

perform the replacements in the top-level term’s indicated type, we will end up
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with the actual type, solved over its constraints. Once no more constraints ex-

ist, the unification is complete. What remains is a listing of each type variable

that may be included in the top-level term’s type, and the corresponding type it

represents. Type variables may still exist in the resulting type; this implies that

they are universal quantifiers. If the constraint set could not be solved, the term

is badly typed and we would not even consider the meaning of remaining type

variables.

7.1.2.3 Integration with Existing Code

The first approach used to collect the constraints was to turn every algebra

into one that returned a tuple containing the type of the term and the constraints

generated. This necessitated manually pattern-matching the tuple, extracting the

related sub-terms’ constraints, combining them and returning them as part of

the pair-result. While it was a relatively mechanical transition, it meant a lot of

extra work and made the code brittle. At one point, the Rosetta type checker

was returning a triple, consisting of the return type, the manually reconstructed

original term, and the set of manually collected constraints.

Adding to this tuple for each significant change is a horrible way to manage

code. These are very regular transformations that should be handled implicitly.

The implementation of paramorphisms in InterpreterLib removed the necessity

for manually reconstructing the original terms; what can be done about the con-

straints collection? The Writer monad is exactly what is needed. Constraints may

only be added, never removed. Thus, we can continually add new constraints by

telling the writer each time a new constraint should be generated. The Writer

monad encapsulates all the necessary mechanisms for collecting the constraints,
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and when we actually run the monads, we will get back the computed constraint-

set, and can then perform unification. Unification won’t be done until we’ve

entirely type checked and constraint-generated the entire term anyways, so this

information is available at the exact moment it is necessary. The unification al-

gorithm (found in [19]) is run and type variables are then replaced throughout

the result type. The exact list of type variables and solutions will be pivotal in

resolving overloading in the future. This exact information is a by-product of the

unification algorithm.

This was perhaps one of the largest changes to the entire body of code. Instead

of having to specify all the rules that must be followed for a particular type to

be valid for some particular term, we can simply relate what conditions must

be valid. For instance, in an if-expression, we previously would have to ensure

that the guard statement actually is a boolean, and we would have to figure out

exactly what is the least super-type of both of the branches to determine the

overall type before we can return what the type of the entire expression is. With

a constraint-based approach, the added complexity of constraint-solving gives us

the opportunity to simplify the typing process for many terms like if-expressions.

Utilizing a constraint-based approach, we can simply add constraints that the

guard must be a boolean, and create a new type variable used to state that both

branches must be subtypes of the type variable. Also quite convenient is the fact

that this type variable is exactly the type of the entire expression, and we have

our result as well. This makes for a clean coding style, quite based on the type

rule of a Rosetta if-expression:

Γ`b : boolean Γ` t : T Γ`f : T

Γ` if b then t else f end if : T
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toRoExpr _ (RoIf b t f) = do
b2 ← b
t2 ← t
f2 ← f
s ← gensym
let s’ = mkRoTyVar $"if"++s
tell [(b2, base "bool"), (t2,s’),(f2,s’)]
return $ s’

RoIf first binds all three sub-terms, and then generates a new type variable

in the next two lines, named similar to if0, if1, or if24. gensym is a function

utilizing the State monad that keeps a counter expressly for generating unique

names. Next, RoIf tells the Writer monad all three constraints generated at this

point–the guard must be a Boolean and both the true and false branches must

be of the same type, represented by the type variable. Consider a more complex

example:

toRoExpr _ (RoSet exprs) = do
tys2 ← sequence exprs
s ← gensym
let s’ = "set" ++ (show s)
tell $ zip tys2 (repeat $ mkRoTyVar s’ )
return $ mkRoSetType $ mkRoTyVar s’

A Rosetta set is simply a homogeneous list. The generated constraints for such

a set are that each element must be of the same type; therefore, we similarly create

a new type variable and zip all the elements’ types with that type variable, and

tell the entire batch of constraints. To fully appreciate the cleanliness of utilizing

the Writer monad, consider the previous alternative:

toRoExpr (RoIf b t f) = do
(b2,bc) ← b
(t2,tc) ← t
(f2,fc) ← f
s ← gensym
let s’ = mkRoTyVar $"if"++s

77



let constraints = bc++tc++fc++[(b2, base "bool"), (t2,s’),(f2,s’)]
return $ (s’,constraints)

The majority of the code for such a simple example is consumed with pattern-

matching, combining, and re-tupling the constraints. The chance to identify the

correct monad and rely on it to thread through the necessary information proves

a vital means of maintaining concise code.

While there were some significant changes to migrate from the information

necessary to decide a term’s type without constraints to a system utilizing con-

straints, many terms of Rosetta were left alone. Specifically, any term that would

not need to generate constraints of their own would not need any modification.

Overall, this is a more modular approach. Any particular algebra that does’t

need to generate any constraints doesn’t need to know the other algebras are

generating constraints via the Writer monad. They don’t have to return pairs or

tell any constraints, since the constraints portion would always be empty. The

algebras that need to tell constraints are exactly the algebras that must know

about the Writer monad, and so there is little chance of constraints-generation

interfering with any other features’ implementations. Indeed, if one algebra does

not utilize the Writer monad, it cannot interact with it at all. This also gives

more motivation for programming in a modular monadic style. Unification was

originally intended for a recursive-descent style type checker, and the approach

conceived for a more general monolithic style of type checking is still viable in a

reasonable format, and we gain flexibility at the same time.

7.1.3 Modifications in Context

The context underwent its own migration, from a simple list of names paired

with types, to one containing information on other modules, to the current system
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where the representation is a symbol table. Changing the representation of context

turns out to be a bit brittle, even with the current approach. As type checking of

multiple modules that use each other becomes the next goal, the need for a more

versatile context was pressing. The simple, flat list of context could not capture

the full knowledge of discovered types without ignoring and violating possible

duplicate names, unexposed parts of other design units, and indeed the scope of

the language itself. For our purposes, a symbol table is a list of triplets of a name,

a type, and another symbol table.

newtype SyTa = SyTa [(String, Lang, SyTa)]

This structure is able to more directly mirror the recursive nature of the scope

of Rosetta, as opposed to some dynamic scope with ad-hoc rules to add and

remove items to and from scope, as the context used to be:

type Env v = [(String,v)]

The change to a symbol table required the modification of all code that would

add to the context, but was relatively isolated, as code that did not rely on the

context was not required to pass through any new variables. Also, since the

upgrade is from a state where only degenerate cases were possible before, the bulk

of the transformation was a simple one, in which the third and new element of

the new context entry would simply be an empty symbol table. In its current

state, the context is much better in tune to the scope of the Rosetta language

itself, and should aid in further reasoning of the Rosetta type system by more

closely mapping reality, and not a series of code design decisions. One of the

biggest lessons to learn from this is that an added layer of abstraction between

using context and representation of context would be worth the effort–for instance,
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creating a set of helper functions that would take the necessary information and

interface with the context may have proved a successful solution. As it stands,

the changes were not too severe, and changing the way some aspect of a language

interfaces with the rest of the language is always going to inflict a wave of tweaks

and changes.

7.1.4 Modifying the Value Space

The last major change has been to abandon the Ty value-space and commit

to the true value-space for types of Rosetta terms themselves. Types are built

into the language as terms, with their own functor in the non-recursive AST

representation. Thus, logic to decide types by explicitly looking at sub-terms’

types must now project the values from the fixed point of the sum into the type’s

functor in order to pattern match. This does not actually occur that often; as in

the examples above, we do name the sub-terms’ types and use them, but we do not

actually pattern-match their exact structure. For instance, with the if-expression,

we tell the constraint that b must be a boolean, but we do not loot at b and check

if this is so. The sub-terms will also have to be projected if further inspection is

necessary. This projecting was an annoyance, since it means the code could require

a thorough overhaul despite its regularity of change, but it is somewhat avoidable.

There is a function provided by InterpreterLib called unsafePrjF that will project

from a fixed point of a sum of functors to the functor buried inside; it relies

on the instances of the SubType class. Thus the paramorphism can provide the

original term in its projected, exposed format, leading to little actual unpackaging

of terms.

Delaying usage of the full Rosetta type functor to represent types was worth
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the wait–early forays into the semantics of the language were not clouded by

concerns with a relatively complex value-space structure. Furthermore, a lone

session’s work makes the current version legitimate for all future use, now that

the Rosetta AST has largely completed its most significant metamorphosis. The

motivation for this last change is to facilitate implementation of the reflective

system in Rosetta. Rosetta code may contain descriptions of more Rosetta code,

and the flow through the various stages of interpretation of such code relies on

the ability to call upon parsing, type checking, and evaluation. Thus the type

checker needs no modifications, and the logic for when to switch between type

checking and anything else is added in an isolated fashion. Indeed, people are

working on evaluation, type checking, and the reflection system respectively, and

the evaluation code and type checking code have not needed any changes to their

approach to be compatible with reflection. They merely need to function and

return the types of values they ought to, such as elements of the Rosetta language

instead of a special data structure to represent types in the type checker’s case. As

updates to the type checker or evaluator are checked into a repository, reflection

can update to the most current implementations and continue to use them in a

general enough way to allow its own progress, quite independent of the current

issues in other analyses.

7.2 Implications of Alternative Approaches

We argue that writing the Rosetta type checker in the modular monadic style

leads to more flexible code, but what alternatives are there, and how would they

have fared under the same stresses of syntax element addition and removal, staged

feature support, and so on? In this section, we compare the traditional recursive-
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descent approach, writing a single type checking function. To be fair, we will

utilize the recursive definition of terms for the internal representation, as this is

the natural target for such an approach.

Initially, we must decide on a set of terms to support, and a value space for

types. What is more, the term space must be agreed upon by anyone who wants

to combine efforts–the parser and type checker would be worthless for evaluation

if they did not operate on the same term space. This introduces a bit of artificial

coordination between individual efforts. Our first approximation is in figure 7.1.

data Tm = TmTru | TmFls | TmBit Int | TmNat Int | TmInt Int

data Ty = TyBool | TyBit | TyNat | TyInt

typeof (TmTru) = TyBool
typeof (TmFls) = TyBool
typeof (TmBit x) = TyBit
typeof (TmNat x) = TyNat
typeof (TmInt x) = TyInt

Figure 7.1.

In the modular monadic style, the assumption is that there is one large AST

in mind, defined as many separate functors. We can consider each functor as

minimally some set of features we want to implement, and without changing the

AST definition we merely include more of the functors in our sum. The AST

definition would not change as a result of the current set of implemented features,

it would only change if the AST were deemed insufficient or inappropriate by itself.

In the current running example, we now want to add in the simply-typed lambda

calculus. In order to maintain the proper bindings, we now need an environment.

To save future effort later on, we realize that we should migrate to a monadic
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version, utilizing only Reader at the moment. We will have to modify the old

term definition, and the old type definition to result in the code of figure 7.2. To

be fair, the type definition was modified at this point in the modular monadic

approach in roughly the same fashion; the term space, however, was not modified

by the decision to begin this phase, only by adding new constructs.

We add if-expressions to the language as well. This involves modifying the

existing term space, as well as modifying the existing typeof code. We would need

to add TmIf Tm Tm Tm to the definition of Tm, and add another pattern-match to

the implementation of typeof:

typeof’ (TmIf a b c) = do
a’ ← typeof’ a
b’ ← typeof’ b
c’ ← typeof’ c
if a’ /= TyBool then error "must have a bool type guard."

else if b’ /= c’ then error "must have matching branches"
else return b’

Notice an emerging pattern–for each sub-term, we must call typeof’ on each

term and then bind the result to a variable name and then only use that name.

With a catamorphic computation style, these sub-terms would all be monadic

computations of the recursive call. This piping through of computations to yield

their values is a simple task, but will always be necessary in this recursive-descent

approach. If you find the need to change the name of the function, there will be

quite a few re-namings to perform.

We need to consider the current flexibility to changes in our term-space. Are

additions simple? What about removal or modification? Additions again imply

modifying our term-space, a relatively simple task for now. Removing a term

from the term-space may occur if the language under design ends up not needing
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data Tm = TmTru | TmFls | TmBit Int | TmNat Int | TmInt Int
| TmLam String Ty Tm | TmVar String | TmApp Tm Tm

data Ty = TyBool | TyBit | TyNat | TyInt | TyMap Ty Ty
deriving (Show, Eq)

type Ctxt = [(String, Ty)]

lkp x ((n,ty):ns) = if x==n then ty else lkp x ns
lkp x [] = error $ show x ++ "not found."
lookupEnv x = ask >>= λenv→ return $ lkp x env

typeof’ :: (MonadReader Ctxt m) ⇒ Tm → m Ty
typeof’ (TmTru) = return TyBool
typeof’ (TmFls) = return TyBool
typeof’ (TmBit x) = return TyBit
typeof’ (TmNat x) = return TyNat
typeof’ (TmInt x) = return TyInt
typeof’ (TmVar x) = do

ty ← lookupEnv x
return ty

typeof’ (TmLam x ty tm) = do
env ← ask
b ← (local ◦ const ) ((x,ty):env) $ typeof’ tm
return $ TyMap ty b

typeof’ (TmApp x y) = do
env ← ask
x’ ← typeof’ x
y’ ← typeof’ y
case x’ of
(TyMap a b) → if a==y’ then return b else error $ "bad app types"
_ → error $ "bad function arg to app"

typeof = flip runReader [] ◦ typeof’

Figure 7.2.
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a term, or ends up providing something similar to deprecate a particular term,

perhaps by elaboration. Removal is still somewhat local, but does involve editing

the typeof function itself. The ability to avoid directly modifying the function is

worth even more when we consider that others may be using a work-in-progress.

In supporting a new feature, the type checker may become unstable during

the process. One solution for anyone who may rely on its stability is to simply

not update to the current version until it is stable. But what if other minor

bugs in relevant portions are found and fixed? Do we fix both the current type

checker and the old version? This parallel implementation is obviously unfortunate

and hopefully unnecessary. With the modular monadic approach, as long as the

new feature is implemented with its own functor and algebra, we can simply

omit the unstable or irrelevant features by removing the functor from the fixed

point of the sum of functors and removing the phi function from the sum of

algebras, respectively. This advantage exists no matter how large or small the

target language is–the modular monadic solution will always be better prepared

to present only portions of its current solution automatically. By presenting the

different functors and algebras, different users can use the same type checker in

different ways simultaneously. The recursive descent version presented thus far has

a monolithic term space and a monolithic function for performing type checking,

and cannot offer such an approach.

Another desired capability is to be able to re-write one phi function and use

both versions in different applications. Perhaps we want to add sub-typing to the

language, but the implementer of the evaluator does not currently want to handle

sub-typing. If sub-types only play a semantic rôle in two of perhaps fourteen

algebras, we can rewrite those two algebras to deny sub-typing semantics, and the
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evaluator can continue development on its own track. Other uses of duplicate phi

functions would be to implement two solutions to the same problem in different

algebras, and run some test-bench on the results. The benefits incurred have been

identified, and as such, InterpreterLib actually has a general means of achieving

this–there is another algebra combinator, called updateAlgebra, which allows us

to replace one phi function in an algebra simply by its type alone. Its usage is

not required to discuss the Rosetta type checker, but its usefulness is yet another

argument for using the modular monadic approach and the generic programming

paradigms provided by InterpreterLib.

We also often want to re-use computation of one algebra with another. There

is no support for sequencing type checking as a monolithic function into some

other function. How can you get the results of each sub-term’s type checking

available at each sub-term for your new analysis? As information such as changes

in context travels from terms to sub-terms, and as information such as constraints

on the type travels upwards, there is no automatic mechanism for supplying this;

type checking will have to be reconsidered in some fashion. With the modular

monadic approach and the utilities of InterpreterLib, such a mechanism is present

in sequenceAlg. Knowledge of the algebraic nature of the approach lends to more

flexible usage.

86



Chapter 8

Conclusions, Future Work

8.1 Conclusions

The Rosetta Type Checker utilizes modular monadic semantics within the

frame of InterpreterLib. It is a collection of separate algebras over the func-

tors of the Rosetta language’s internal non-recursive representation, and it uses

a paramorphism to traverse the structure, maintaining context via the Reader

monad, maintaining constraints on types via the Writer monad, and generating

new type variables via the State monad. The type checker performs unification

on the set of constraints generated to determine the type of the term. It han-

dles basic elements and functions, individual design units and supports universal

quantifiers. The nature of this approach enabled constant changes to the term

space, the supported features, and even significant changes to the algorithmic ap-

proach in performing type checking, with manageable modifications. The result is

a highly modular collection of algebras that can be re-used, sequenced, or updated

in a variety of applications without actually requiring modifications to the type

checker itself. The Rosetta type checker represents the benefits of the modular
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monadic approach that InterpreterLib provides.

It takes time to get used to writing interpreters in a modular monadic style,

but when writing code for a large enough system the benefits of modularity and

flexibility favor this approach. The ability to change the underlying language

with minimal interaction and minimal code-rewriting is an excellent goal. Fur-

thermore, the ability to re-use code in many sequenced or qualified ways gives

an unmistakable advantage. The ability to choose what functors to include, or

how to sequence an algebra with an analysis without needing any modification to

the original algebra gives the programmer a flexibility not available with a more

traditional approach. Even the ability to change the algorithmic approach to one

with minimal areas demanding consideration for rewriting makes the program-

ming task tractable in a real-world environment. This style of programming is

significantly adaptable; the current work was interpretation of a moving target to

a moving target, and yet a thousand some lines of Haskell code was able to keep

up. The theory behind the framework is sound and general enough to allow for

significant maneuvering within that framework.

8.2 Future Work

Rosetta is defined as a dependently typed language, and the framework for

a dependent language will likely induce some significant changes to the current

state of the typechecker. Investigation into the properties of dependently typed

languages in general is needed in order to ascertain what the Rosetta typechecker

needs to fulfill the language’s definition. It may be that only some subset of

the possible dependent features will be necessary, or perhaps the dependent type

system in Rosetta is unlike any before it. A dependently typed system implies
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that some computation will be possible while calculating a type; it may be that

an algebra can check for some known halting conditions that must always apply

to the dependent aspects, and thus result in either a computable type or a type

error. Obviously we cannot solve the general halting problem, but as McBride

suggests [14], there are useful subsets of computations that can be proved to halt

or not, based on structural induction. Failing such a possibility for Rosetta’s

dependent characteristics, the Rosetta type checker may need to require type

ascriptions for dependent elements beyond structurally inductive ones, such that

the task of inference is demoted to the task of verifying the ascribed type. If such

an analysis proves possible, the Rosetta type checker can then simply run the

analysis to ensure a term would halt, and then could utilize the Rosetta evaluator

algebra. Assuming there is enough room for exploration here, the dependent type

system of Rosetta will likely be the topic of my next thesis.

One limitation of the current typechecker is the inability to type check across

modules. There is a very unrestrictive series of rules for where a package or

component may reside. The inter-component dependencies must be sorted out

prior to typechecking any module–use clauses must respect the export lists. In

order to be able to add a package’s exported parts to the context for another

design unit, it must already have been sufficiently type checked to know what

must be added. The root of the problem is that the task of creating the symbol

table for an entire package containing items that refer to each other is limited

by knowing the symbol table of all others to compute the symbol table of a

particular design unit. In order to tie this particular recursive knot of symbol

table dependencies, we can rely on Erkök’s solution [5] to the repMin problem

that Bird proposed in 1984. This has already been successfully implemented in
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the Rosetta evaluator, and is a promising approach that may be applied in other

instances as well. It essentially makes information available at each node that

must first visit each node to calculate, and relies on the lazy evaluation nature

of Haskell in its implementation via mdo. The technique might also be applied

to provide the set of type variable substitutions, gained by constraint generation

and solving, to each node for immediate replacement. This means that we may

sequence the type checker with another algebra and get the actual type of each

term, and not potentially some type variable that would later on be solved and

given a substitution. The work on packages is likely the first and foremost goal of

future work, as it opens up the largest set of Rosetta which would then be ready

for type checking, and also is a relatively vital portion of the language by itself.
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Appendix A

Type Checker Code

Portions of the code for the Rosetta type checker are presented here, to give

an idea of the actual code. Too many other files are dependent on each other

which are also under development, and so it would be pointless in trying to gain

a snapshot of the entire system at this point in time; as such, only the relevant

type checking files are presented.

A.1 TypeChecker/Alg.hs

This is the file in which the semantics are defined per algebra, one phi function

per functor.

{-# OPTIONS -fglasgow-exts #-}

{-# OPTIONS -fno-monomorphism-restriction #-}

{-# OPTIONS -fallow-incoherent-instances #-}

{-# OPTIONS -fcontext-stack=40 #-}

module Rosetta.TypeChecker.Alg where

import Rosetta.Roast.NRast
import Rosetta.Roast.Common
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import Rosetta.Roast.Lang

import Rosetta.TypeChecker.Common

import Regular.Functor
import Regular.Algebra
import Regular.Instances

import Control.Monad.Reader
import Control.Monad.State
import Control.Monad.Writer
import Control.Monad.Identity
import Maybe
import Monad

-- all the algebras

algRoConstructor a = mkAlg $ toRoConstructor a
algRoDataType a = mkAlg $ toRoDataType a
algRoDecl a = mkAlg $ toRoDecl a
algRoDeclValue a = mkAlg $ toRoDeclValue a
algRoDesignUnits a = mkAlg $ toRoDesignUnits a
algRoExpr a = mkAlg $ toRoExpr a
algRoImportSpec a = mkAlg $ toRoImportSpec a
algRoMode a = mkAlg $ toRoMode a
algRoObserver a = mkAlg $ toRoObserver a
algRoParameter a = mkAlg $ toRoParameter a
algRoQName a = mkAlg $ toRoQName a
algRoTerm a = mkAlg $ toRoTerm a
algRoType a = mkAlg $ toRoType a
algRoTypeVar a = mkAlg $ toRoTypeVar a

-------------------------------------------------------------

toRoConstructor :: (MonadWriter Sigma m, MonadReader SyTa m,
MonadState (Int,String) m)
⇒ Lang → RoConstructor (m TyLang) → m TyLang

toRoConstructor _ (RoConstructor n1 n2 observers) =
fail ("RoConstructorNR would return TyFoo ◦ ")

--------------------------------------------------------------

toRoDataType :: (MonadWriter Sigma m, MonadReader SyTa m,
MonadState (Int,String) m)
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⇒ Lang → RoDataType (m TyLang) → m TyLang
toRoDataType _ (RoDataType tyvars constructors) =

fail ("RoDataType would return TyFoo ◦ ")

-------------------------------------------------------------

toRoDecl :: (MonadWriter Sigma m, MonadReader SyTa m,
MonadState (Int,String) m)
⇒ Lang → RoDecl (m TyLang) → m TyLang

toRoDecl _ (RoItem name ty declval) = do
syta ← ask
let (my_name, my_type,my_syta) =
getSytaEntry ("item1 " ++ name) name syta

let syta’ = conjoin2Sytas
(addDecsFrom ("item2 " ++ name) name syta) my_syta

let syta2 = conjoin2Sytas
(addDecsFrom ("item3 " ++ name) my_name syta’) my_syta

(dv2) ← withEnv syta2 declval
(ty2) ← withEnv syta2 ty
case ((prjF ◦ out ) dv2) of

(Just (RoDepProduct dpd dpr)) → do
tell $ [(dpr, ty2)]
return ty2
(Just a) → do
tell $ [(pack a,ty2)]
return ty2
(Nothing) → error $ "couldn’t see dv2, = : " ++ (show dv2)

toRoDecl self (RoAnnotatedDecl decl annots) = do
syta ← ask
(d2) ← decl
return d2

-------------------------------------------------------------

toRoDeclValue :: (MonadWriter Sigma m, MonadReader SyTa m,
MonadState (Int,String) m)
⇒ Lang → RoDeclValue (m TyLang) → m TyLang

toRoDeclValue self (RoFacet domain qvars params
decls terms imports exports) = do

syta ← ask
dom2 ← domain
q2 ← sequence qvars
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p2 ← sequence params
d2 ← sequence decls
--get their names

let (pnames, qnames, dnames) =
case unpack self of
(RoFacet dom’ q’ p’ d’ t’ i’ e’) →
(getPnames p’, getPnames q’, getDnames d’)

--name all symbol-tablable things

let allpars = q2 ++ p2 ++ d2
let allnames = qnames ++ pnames ++ dnames
let msg = "facet w/" ++ (concat (map (λa→a++",") dnames))
let allsymtabs = (map (λa→ case (getSytaEntry msg a syta) of

(a,b,c)→c) allnames)
--add their stuff to the environment

let env2 = conjoin2Sytas (extendSyTaList
((concat [qnames,pnames,dnames]))
allpars
(take (length allpars) (repeat emptySyta))
syta

) syta
d2 ← withEnv env2 $ sequence decls
t2 ← withEnv env2 (sequence terms)
i2 ← imports
return $ dom2

toRoDeclValue self (RoFacetInterface domain qvars params
decls imports exports) = do

syta::(SyTa) ← ask
dom2 ← domain
let (qnames, pnames, dnames) = case unpack self of

(RoFacetInterface dom’ q’ p’ d’ i’ e’) →
(getPnames q’, getPnames p’, getDnames d’)

p2 ← sequence params
let envs’ = (map (λa → a syta)

(map (addDecsFrom "") dnames)) :: [SyTa]
let decsWithEnvs = (zip envs’ decls)
d2 ← sequence $ map (λ(a,b) → withEnv a b) decsWithEnvs
i2 ← imports
return $ dom2

toRoDeclValue self (RoFacetBody decls terms imports) = do
syta ← ask
let dnames = case unpack self of
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(RoFacetBody d’ t’ i’)→(getDnames d’)
let envs’ = (map (λa → a syta)

(map (addDecsFrom "") dnames)) :: [SyTa]
let decsWithEnvs = (zip envs’ decls)
d2 ← sequence $ map (λ(a,b) → withEnv a b) decsWithEnvs
let env2 = extendSyTaList (dnames) d2 (getemptySytas (length d2)) syta
t2 ← withEnv env2 (sequence terms)
i2 ← imports
if (boolsOrFacets d2)
then fail ("Rofacetbody would parareturn TyFoo ◦ ")
else fail "FacetBody: all declarations must be booleans or facets."

toRoDeclValue self (RoComponent domain qvars params
decls asses reqs imps imports exports) = do

syta ← ask
dom2 ← domain
p2 ← sequence params
let (qnames,pnames,dnames) = case unpack self of
(RoComponent dom’ q’ p’ d’ as’ re’ im’ i’ e’)→
(getPnames q’, getPnames p’,getDnames d’)

q2 ← sequence qvars
d2 ← sequence decls
let numentries = length qnames + length pnames + length dnames
let env2 = extendSyTaList (concat [qnames,pnames,dnames])

(concat [q2,p2,d2]) (getemptySytas numentries) syta
a2 ← withEnv env2 $ sequence asses
r2 ← withEnv env2 $ sequence reqs
im2 ← withEnv env2 $ sequence imps
i2 ← withEnv env2 imports
return $ dom2

toRoDeclValue self (RoComponentInterface domain qvars params
decls imports exports) = do

dom2 ← domain
p2 ← sequence params
q2 ← sequence qvars
d2 ← sequence decls
i2 ← imports
let (qnames,pnames,dnames) = case unpack self of
(RoComponent dom’ q’ p’ d’ as’ re’ im’ i’ e’)→
(getPnames q’, getPnames p’,getDnames d’)

return dom2

toRoDeclValue self (RoComponentBody decls asses reqs implics imports) = do
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d2 ← sequence decls
let dnames = case unpack self of

(RoComponentBody d’ as’ re’ im’ i’)→ getDnames d’
a2 ← sequence asses
r2 ← sequence reqs
im2← sequence implics
i2 ← imports
if (boolsOrFacets (d2 ++ a2 ++ r2 ++ im2))
then fail ("RoComponentBody would parareturn TyFoo ◦ ")
else fail "ComponentBody: all decl’s must be booleans or facets."

toRoDeclValue self (RoPackage domain params decls imports exports) = do
syta ← ask
dom2 ← withEnv syta domain
p2 ← withEnv syta $ sequence params
let (pnames,dnames,decltms) = case (unpack self) of
(RoPackage dom’ p’ d’ i’ e’)→ (getPnames p’,getDnames d’,d’)

let envs’ = (map (λa → a syta)
(map (addDecsFrom ("package w/"++(dnames!!0))) dnames)) :: [SyTa]

let decsWithEnvs = (zip envs’ decls)
let computationsForEach = map (λ(a,b)→withEnv a b) decsWithEnvs
d2 ← sequence computationsForEach
i2 ← imports
return dom2

toRoDeclValue self (RoPackageInterface domain params
decls imports exports) = do

dom2 ← domain
p2 ← sequence params
let (pnames,dnames) = case unpack self of
(RoPackageInterface dom’ p’ d’ i’ e’)→ (getPnames p’,getDnames d’)

d2 ← sequence decls
i2 ← imports
return $ dom2

toRoDeclValue self (RoPackageBody decls imports) = do
d2 ← sequence decls
let dnames = case unpack self of

(RoPackageBody d’ i’)→ getDnames d’
i2 ← imports
if (boolsOrFacets d2)

then fail ("RoPackageBody would parareturn TyFoo ◦ ")
else fail ("PackageBody: all declarations must be booleans "++

"or facets.")
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toRoDeclValue self (RoDomain domain params decls terms
imports exports) = do

syta ← ask
dom2 ← domain
p2 ← sequence params
d2 ← sequence decls
let (pnames,dnames) = case (unpack self) of
(RoDomain dom’ p’ d’ t’ i’ e’)→
(getPnames p’,getDnames d’)

let allpars = p2 ++ d2
let env2 = extendSyTaList (concat[pnames,dnames])

allpars (getemptySytas (length allpars)) syta
t2 ← withEnv env2 (sequence terms)
i2 ← imports
return dom2

toRoDeclValue self (RoTranslator params expr) = do
p’ ← sequence params
e’ ← expr
fail "not sure how to handle RoTranslators..."

toRoDeclValue self (RoFunctor params expr) = do
p’ ← sequence params
e’ ← expr
fail "not sure how to handle RoFunctors..."

toRoDeclValue self (RoCombinator params expr) = do
p’ ← sequence params
e’ ← expr
fail "not sure how to handle RoCombinators..."

toRoDeclValue self (RoData ty) = fail ("RoData would return TyFoo ◦ ")

toRoDeclValue self (RoValue expr) = do
e2 ← expr
return e2

-------------------------------------------------------------

toRoDesignUnits :: (MonadReader (SyTa) m)
⇒ Lang → RoDesignUnits (m TyLang) → m TyLang

toRoDesignUnits self (RoDesignUnits name units) = do
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let us = case (unpack self) of
(RoDesignUnits name’ units’) → units’

unitys ← sequence units
return $ mkRoDesUnits unitys

-------------------------------------------------------------

toRoExpr :: (MonadWriter Sigma m, MonadReader (SyTa) m,
MonadState (Int,String) m)
⇒ Lang → RoExpr (m TyLang) → m TyLang

toRoExpr _ (RoVar qname) = qname
toRoExpr _ (RoLit lit) = do

case (lit) of
t@(RoChar c ) → return (base "char")
t@(RoBool b ) → return (base "bool")
t@(RoString s ) → return (base "string")
t@(RoNumberInf ) → return (base "number")
t@(RoNumberNegInf ) → return (base "number")
t@(RoComplex r i ) → return (base "complex")
t@(RoImaginary i ) → return (base "imaginary")
t@(RoReal r ) → return (base "real")
t@(RoPosReal r ) → return (base "posreal")
t@(RoNegReal r ) → return (base "negreal")
t@(RoRational n d ) → return (base "rational")
t@(RoInt i ) | i == 1 | | i == 0 → return (base "bit")

| otherwise → return (base "integer")
t@(RoPosInt i ) → return (base "posint")
t@(RoNegInt i ) → return (base "negint")
t@(RoNatural n ) → return (base "natural")
t@(RoBit b ) → return (base "bit")

toRoExpr self (RoLambda qvars params range body) = do
syta ← ask
q2 ← sequence qvars
p2 ← sequence params
r2 ← range
let allparams = q2 ++ p2
let (qnames, pnames) = case unpack self of
(RoLambda q’ p’ r’ b’)→ (getPnames q’,getPnames p’)

let lengthsmatch = (length p2 == length pnames)
&& (length q2 == length qnames)

if lengthsmatch
then do
let env2 = extendSyTaList (qnames ++ pnames)
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allparams (getemptySytas $ length allparams) syta
b2 ← local (const env2) body
if sto b2 r2
then do
if (length allparams > 1)
then return $ mkRoDepProduct allparams b2
else return $ mkRoDepProduct [head allparams] b2

else fail $ concat ["Bad function range found;",
"λnλnλtAscribed: ", show r2,"λnλtFound: ",
show b2,"λn"]

else fail $ concat ["Badly-formed NRAST: number ",
"of parameters given (", show (length p2),
") doesn’t match number of parameter names (",
show (length pnames),") given.λn"]

toRoExpr self (RoApp t1 params apptype ) = do
depfunTy ← t1
actuals2 ← sequence params
-- make sure it’s a mapping

case ((prjF ◦ out) depfunTy) of
(Just (RoDepProduct depparams deprange)) → do

let constraints = zip actuals2 depparams

--constraint-solving will ensure the types match.

tell constraints
if (length actuals2 < length depparams)
then do

let leftovers = drop (length actuals2) depparams
return $ mkRoDepProduct leftovers deprange

else if length actuals2 == length depparams
then return deprange
else fail (concat["Arguments to an app (including ",

operations) do not match formal parameters.",
                        λnλtGiven: ",(show actuals2),"λnλtExpected: ",

(show depparams),"λnλn.(funTy:)",(show
depfunTy), "λnλn",(show $length actuals2),
"λnλn",(show $length depparams),"λnλn",
(show constraints)])

(Just(RoTyVar tyvar)) → do
rvar ← gensym
let retvar = mkRoTyVar $ "somefunc"++(show rvar)
tell $ [((mkRoTyVar tyvar),mkRoDepProduct actuals2 retvar)]
return retvar

(Just _) → do
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let (theappterm,theparams) = case unpack self of
(RoApp x y z) → (x,y)

actuals2 ← sequence params
fail ("Tried to apply to a non-function;λnλnApp Term:"

++(show theappterm)++"λnType:"++(show depfunTy)
++"λnλnthe param(s):"++(show theparams)++"λnType:"
++(show actuals2)
)

(Nothing) → error
$ "couldn’t manage to unpack in an app; tried: "
++ (show depfunTy)

toRoExpr _ (RoLet decs body) =
do d2 ← sequence decs

syta ← ask
b2 ← withEnv syta body
return b2

toRoExpr _ (RoIf b t f) = do
b2 ← b
t2 ← t
f2 ← f
let guardconstraint = if (istyvar b2)

then [(b2,(base "bool"))] else []
let branchconstraint = if (istyvar t2) | | (istyvar f2)

then [(t2,f2)] else []
tell (guardconstraint++branchconstraint)
let boolokay = (not(istyvar b2) && (sto b2 (base "bool")))

| | (istyvar b2)
let branchescheckable = ((not(istyvar t2)) && (not(istyvar f2)))
if (not boolokay)
then fail ("If-expression must have boolean guard "

++"statement, given type "++(show b2)++".")
else if branchescheckable

then if (sto t2 f2) then return f2 else
if (sto f2 t2) then return t2 else

fail ("Branches of if-expression must match"
++" types. (given "++(show t2)++", "
++(show f2)++").")

else do
s ← gensym
let branchty = mkRoTyVar $ "v"++(show s)
return t2

toRoExpr _ (RoCase c alts) = do
c2 ← c
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a2 ← sequence (map (λ(a,b)→a) alts)
b2 ← sequence (map (λ(a,b)→b) alts)
if (tysmatch ((mkRoSetType c2):a2)) && (tysmatch b2)

then case (b2) of
(b:bs)→ return b
([]) → fail ("TC: cannot have a case statement"

++" with no alternates!")
else fail ("Cases must match case_expr with alternatives’ "

++"types, and result types must match.")

toRoExpr _ (RoSet exprs) = do
tys2 ← sequence exprs
s ← gensym
let s’ = "set" ++ (show s)
tell $ zip tys2 (repeat $ mkRoTyVar s’ )
return $ mkRoSetType $ mkRoTyVar s’

toRoExpr _ (RoSequence exprs) = do
tys2 ← sequence exprs
s ← gensym
let s’ = "seq" ++ (show s)
tell $ zip tys2 $ repeat $ mkRoTyVar s’
return $ mkRoSeqType $ mkRoTyVar s’

toRoExpr _ (RoQuant q params body) = do
p2 ← sequence params
b2 ← body
if (sto b2 (base "bool"))
then return (base "bool")
else fail ("Quantified expressions must be boolean."

++"λnλtFound as: "++(show b2))

toRoExpr _ (RoParen e) = do
e2 ← e
return e2

toRoExpr _ (RoTypeName ty) = do
t2 ← ty
return t2

toRoExpr _ (RoAnnotated e annots) = do
e2 ← e
return e2
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toRoExpr _ (RoUnInterpreted) = return (base "uninterpreted")

-------------------------------------------------------------

toRoImportSpec :: (MonadWriter Sigma m, MonadReader (SyTa) m,
MonadState (Int,String) m)
⇒ Lang → RoImportSpec (m TyLang) → m TyLang

toRoImportSpec _ (RoImport names) = do
n2 ← sequence names
return $ base "foo_toRoImportSpec incomplete"

-------------------------------------------------------------

toRoMode :: (MonadWriter Sigma m, MonadReader (SyTa) m,
MonadState (Int,String) m)
⇒ Lang → RoMode (m TyLang) → m TyLang

toRoMode _ (RoParamMode a) = do
a2 ← a
return a2

toRoMode _ (NoMode) = return $ base "foo_toRoMode incomplete"

-------------------------------------------------------------

-- name is the observer’s label, and expr is the type of the

-- projected piece.

toRoObserver :: (MonadWriter Sigma m, MonadReader (SyTa) m,
MonadState (Int,String) m)
⇒ Lang → RoObserver (m TyLang) → m TyLang

toRoObserver _ (RoObserver name expr) =
fail ("RoObserver would return TyFoo ◦ ")

-------------------------------------------------------------

toRoParameter :: (MonadWriter Sigma m, MonadReader (SyTa) m,
MonadState (Int,String) m)
⇒ Lang → RoParameter (m TyLang) → m TyLang

toRoParameter _ (RoParameter name expr mode) = do
e2 ←expr
return e2
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-------------------------------------------------------------

toRoQName :: (MonadWriter Sigma m, MonadReader (SyTa) m,
MonadState (Int,String) m)
⇒ Lang → RoQName (m TyLang) → m TyLang

toRoQName _ n@(QName listnames lastname) = do
syta ← ask
lookupEnv n syta

-------------------------------------------------------------

toRoTerm :: (MonadWriter Sigma m, MonadReader (SyTa) m,
MonadState (Int,String) m)
⇒ Lang → RoTerm (m TyLang) → m TyLang

toRoTerm _ (RoLabTerm name expr) = do
expr

toRoTerm _ (RoUnlabTerm expr) = do
expr

-------------------------------------------------------------

toRoType :: (MonadWriter Sigma m, MonadReader (SyTa) m,
MonadState (Int,String) m)
⇒ Lang → RoType (m TyLang) → m TyLang

toRoType _ (Type) = return mkType
toRoType _ (RoBaseType s) = case s of

("boolean") → return (base "bool")
("char") → return (base "char")
("string") → return (base "string")
("element") → return (base "element")
("complex") → return (base "complex")
("imaginary") → return (base "imaginary")
("real") → return (base "real")
("posreal") → return (base "posreal")
("negreal") → return (base "negreal")
("rational") → return (base "rational")
("integer") → return (base "integer")
("posint") → return (base "posint")
("negint") → return (base "negint")
("natural") → return (base "natural")
("bit") → return (base "bit")
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(_) → fail ("badly formed hack-type: "++s)

toRoType _ (RoSubtype ty) = do ty2 ← ty; return $ mkRoSubtype ty2
toRoType _ (RoSetType ty) = do ty2 ← ty; return $ mkRoSetType ty2
toRoType _ (RoArrayType ty) = do ty2 ← ty; return $ mkRoSeqType ty2
toRoType _ (RoDepProduct params b) = do

p2 ← sequence params
b2 ← b
return $ mkRoDepProduct p2 b2

toRoType _ (RoTyVar name) = do
syta ← ask
lookupEnv (QName [] name) syta

toRoType _ (RoSeqType ty) = do
ty2 ← ty
return $ mkRoSeqType ty2

-------------------------------------------------------------

toRoTypeVar :: (MonadWriter Sigma m, MonadReader (SyTa) m,
MonadState (Int,String) m)
⇒ Lang → RoTypeVar (m TyLang) → m TyLang

toRoTypeVar _ (RoTypeVar name expr) = do
e2 ← expr
return $ mkRoTyVar name

-- ==========================================================

A.2 TypeChecker/Common.hs

This section provides the code of TypeChecker/Common.hs, which is where a

large number of helper functions are created, both for the algebras, testing, and

the overall combination of type checking into a single algebra. Some parts of this

are not particularly relevant to the shown techniques of interpreter design, but

they may be necessary to understand the code written with these helper functions

and standard environment definitions.

{-# OPTIONS -fglasgow-exts #-}
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{-# OPTIONS -fno-monomorphism-restriction #-}

{-# OPTIONS -fcontext-stack=40 #-}

module Rosetta.TypeChecker.Common where

import Rosetta.Roast.All
import Rosetta.Roast.Common

import Regular.Functor
import Regular.Algebra
import Regular.Instances
import MMS.HoFix

import Control.Monad.Reader
import Control.Monad.State
import Control.Monad.Writer
import Control.Monad.Identity

import Maybe
import Monad

----------------------------------------

--The TypeChecking Monad...

type TCMonad v = StateT (Int,String)
(WriterT Sigma (ReaderT SyTa Identity))

runTCMonad {-evm-} env x = runIdentity im
where im = runReaderT rm env

rm = runWriterT wm
wm = runStateT x (0,"")

-------------------

newtype SyTa = SyTa [(String, Lang, (SyTa))]
emptySyta :: SyTa
emptySyta = SyTa []

--alias, so we know when it’s just a type and when it’s truly a Lang.

type TyLang = Lang

base s = mkRoBaseType s
dp = mkRoDepProduct
element = base "element"
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char = base "char"
bool = base "bool"
string = base "string"
number = base "number"
complex = base "complex"
imaginary = base "imaginary"
real = base "real"
posreal = base "posreal"
negreal = base "negreal"
rational = base "rational"
int = base "integer"
posint = base "posint"
negint = base "negint"
natural = base "natural"
bit = base "bit"

type Env v = [(String,v)]
-------------------

-- constraint-based typing bits and bytes

type Constraint = (Lang, Lang)
type Sigma = [Constraint]

unpack :: (SubFunctor f f1, Show (Fix f1)) ⇒ Fix f1 → f (Fix f1)
unpack a = case (prjF ◦ out) a of

(Just x) → x
(Nothing) → error $ "couldn’t unpack1:λnλn " ++ (show a)

unpack2 :: (SubFunctor f f1, Show (Fix f1)) ⇒ Fix f1 → f (Fix f1)
unpack2 a = case (prjF ◦ out) a of

(Just x) → x
(Nothing) → error $ "couldn’t unpack2:λnλn " ++ (show a)

unpackM a = do
a’ ← (prjF ◦ out ) a
case a’ of
(Just x) → return x
(Nothing) → error $ "couldn’t unpack3:λnλn " ++ (show a)

pack = inn ◦ injF
packpair (x,y) = (pack x, pack y)
-------------------------------------------------------------
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isty :: Lang → Bool
isty s = case unpack s of

(Type) → True
(RoBaseType _ ) → True
(RoSubtype _ ) → True
(RoSetType _ ) → True
(RoSeqType _ ) → True
(RoMultisetType _ ) → True
(RoArrayType _ ) → True
(RoDomainType _ ) → True
(RoDepProduct _ _ ) → True
(RoTyVar _ ) → True
(RoDesUnits _ ) → True
(a) → False

--formatshow :: String → SyTa → String

formatshow amt (SyTa xs) = concatMap (λ(x,y,z) → "λnλnλt(" ++ amt
++ (show x)++","++(show y)++","++(formatshow "λt" z)++")") xs

--formatshownames :: String → SyTa → String

formatshownames amt (SyTa xs) = concatMap (λ(x,y,z) → "λnλt" ++
amt ++ " "++(show x)) xs

--formatshownamessmall :: SyTa → String

formatshownamessmall (SyTa xs) =
concatMap (λ(x,y,z) → "λt"++(show x)) xs

--getSytaEntry :: String → SyTa → (String, Lang, SyTa)

getSytaEntry msg s syta@(SyTa xs) = do
let x = lookup3 s syta
case x of
(Just a) → a
(Nothing) → do

error $ "(via "++msg++"): tried to getSytaEntry for "
++ (show s) ++", but it wasn’t in the symbol table:"
++ (formatshownamessmall syta)

addDecsFrom msg s sy@(SyTa xs) = case (getSytaEntry msg s sy) of
(a,b,SyTa c) → SyTa $ c++xs

lookup3 :: String → SyTa → Maybe (String,TyLang,SyTa)
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lookup3 a (SyTa []) = Nothing
lookup3 a (SyTa ((x,y,z):xs)) =

if a==x then Just (x,y,z) else lookup3 a $ SyTa xs

lookupEnv :: (Monad m) ⇒ RoQName c → SyTa → m Lang
lookupEnv (QName [] name) symtab = lookupLocal name symtab
where lookupLocal s l_env = case lookup3 s l_env of

Just (_,ty,_) → return ty
Nothing → fail $ s ++ " not found."

lookupEnv (QName (x:xs) name) symtab =
let (Just (_,_,xcomp)) = lookup3 x symtab
in lookupEnv (QName xs name) xcomp

-----------

getemptySytas :: Int → [SyTa]
getemptySytas x = take x $ repeat emptySyta

extendSyTa :: (String,(Lang),SyTa) → SyTa → SyTa
extendSyTa next (SyTa xs) = SyTa $ next : xs

extendSyTaList :: [String] → [(Lang)] → [SyTa] → SyTa → SyTa
extendSyTaList strs tys sytas st =

if length strs == length tys && length tys == length sytas
then foldr extendSyTa st (zip3 strs tys sytas)
else error $ "can’t doit."

conjoin2Sytas (SyTa a) (SyTa b) = SyTa $ a++b

conjoinSytaList = foldr conjoin2Sytas emptySyta

withEnv:: (MonadReader (SyTa) m) ⇒ SyTa → m c → m c
withEnv = local ◦ const

-----------

initEnv = conjoin2Sytas stdEnv trusted_state_basedEnv

stdEnv = SyTa
[("boolean", tyBool , emptySyta),
("char", tyChar , emptySyta),
("string", tyString , emptySyta),
("element", tyElement , emptySyta),
("complex", tyComplex , emptySyta),
("imaginary",tyImaginary , emptySyta),
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("real", tyReal , emptySyta),
("posreal", tyPosReal , emptySyta),
("negeal", tyNegReal , emptySyta),
("rational", tyRational , emptySyta),
("integer", tyInt , emptySyta),
("posint", tyPosInt , emptySyta),
("negint", tyNegInt , emptySyta),
("natural", tyNatural , emptySyta),
("bit", tyBit , emptySyta),
("+", dp [int,int] int, emptySyta),
("-", dp [int,int] int, emptySyta),
("∗", dp [int,int] int, emptySyta),
("=", dp [element,element] bool, emptySyta),
("’", dp [element] element, emptySyta),
("%", dp [bit] bool, emptySyta),
("and",dp [bool, bool] bool, emptySyta),
("or", dp [bool, bool] bool, emptySyta),
("not",dp [element] element, emptySyta),
(">", dp [int,int] bool, emptySyta),
("<", dp [int,int] bool, emptySyta),
("≥", dp [int,int] bool, emptySyta),
("=<", dp [int,int] bool, emptySyta),
("mod",dp [int,int] int, emptySyta),
("div",dp [int,int] int, emptySyta),
("event",dp [bit] bool, emptySyta),

--the domains should always be referrable, though their insides may not.

("logic",tyDomain "logic", emptySyta),
("static",tyDomain "static", emptySyta),
("state_based",tyDomain "state_based", emptySyta),
("finite_state",tyDomain "finite_state", emptySyta),
("infinite_state",tyDomain "infinite_state", emptySyta),
("discrete_temporal",tyDomain "discrete_temporal", emptySyta),
("discrete_time",tyDomain "discrete_time", emptySyta),
("continuous_temporal",tyDomain "continuous_temporal", emptySyta),
("continuous_time",tyDomain "continuous_time", emptySyta),
("frequency",tyDomain "frequency", emptySyta),
("signal_based",tyDomain "signal_based", emptySyta),
("process_based",tyDomain "process_based", emptySyta),
("CSP",tyDomain "CSP", emptySyta),
("pi_calculus",tyDomain "pi_calculus", emptySyta),
("discrete_event",tyDomain "discrete_event", emptySyta),
("tagged_event",tyDomain "tagged_event", emptySyta),
("trusted_state_based",tyDomain "trusted_state_based", emptySyta)
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]

{- anything that is a standard part of a particular domain should be

added to these domains in the appropriate []. In the future, these

will be used to extend the current environment with the standard

things available for current typechecking. I assume that’ll be a

slight change to lookup.

-}

nullEnv = emptySyta
staticEnv = conjoin2Sytas emptySyta nullEnv
state_basedEnv = conjoin2Sytas emptySyta staticEnv
finite_stateEnv = conjoin2Sytas emptySyta state_basedEnv
infinite_stateEnv = conjoin2Sytas emptySyta state_basedEnv
discrete_temporalEnv = conjoin2Sytas emptySyta infinite_stateEnv
discrete_timeEnv = conjoin2Sytas emptySyta discrete_temporalEnv
continuous_temporalEnv = conjoin2Sytas emptySyta infinite_stateEnv
continuous_timeEnv = conjoin2Sytas emptySyta continuous_temporalEnv
frequencyEnv = conjoin2Sytas emptySyta continuous_temporalEnv
signal_basedEnv = conjoin2Sytas emptySyta staticEnv
process_basedEnv = conjoin2Sytas emptySyta signal_basedEnv
cspEnv = conjoin2Sytas emptySyta process_basedEnv
pi_calculusEnv = conjoin2Sytas emptySyta process_basedEnv
trace_basedEnv = conjoin2Sytas emptySyta signal_basedEnv
discrete_eventEnv = conjoin2Sytas emptySyta trace_basedEnv
tagged_eventEnv = conjoin2Sytas emptySyta trace_basedEnv
trusted_state_basedEnv = conjoin2Sytas

(SyTa [("confidentiality",tyBool, emptySyta),
("integrity",tyBool, emptySyta),
("availability",tyBool, emptySyta),
("nonrepudiation",tyBool, emptySyta)
]

) state_basedEnv

----------------------------------------

gensym = do (s,str) ← get
put (s+1,str)
return (s+1)

traceMessage s = do
(a,b) ← get
put (a, b ++ "λnλn" ++ s )

errorMessage :: (MonadState (Int, String) m) ⇒ String → m a
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errorMessage (s::String) = do
(a,b) ← get
error $ s ++ "λnλnλn ==⇒ trace: λnλnλt" ++ (show b)

-------------------------------------------------------------

data FacetPortion = FullFacet | Interface | Body deriving (Show, Eq)

tyElement = mkRoBaseType "element"
tyBool = mkRoBaseType "bool"
tyChar = mkRoBaseType "char"
tyString = mkRoBaseType "string"
tyNumber = mkRoBaseType "number"
tyComplex = mkRoBaseType "complex"
tyImaginary = mkRoBaseType "imaginary"
tyReal = mkRoBaseType "real"
tyPosReal = mkRoBaseType "posreal"
tyNegReal = mkRoBaseType "negreal"
tyRational = mkRoBaseType "rational"
tyInt = mkRoBaseType "integer"
tyPosInt = mkRoBaseType "posint"
tyNegInt = mkRoBaseType "negint"
tyNatural = mkRoBaseType "natural"
tyBit = mkRoBaseType "bit"
tyTop = mkRoBaseType "top"
tyBottom = mkRoBaseType "bottom"
tyUnit = mkRoBaseType "unit"
tyFoo = mkRoBaseType "foo"
tyType = mkRoBaseType "type"
tySubtype ty = mkRoSubtype ty
tySet ty = mkRoSetType ty
tySeq ty = mkRoSeqType ty
tyMultiset ty = mkRoMultisetType ty

tyRoDepProduct xs x = mkRoDepProduct xs x

tyVar nm = mkRoTyVar nm
tyDomain s = mkRoDomainType s

tyA t1 t2 = mkRoDepProduct [t1] t2

-------------------------------------------------------------

-- SUBTYPEOF, but really just for base types for now...
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sto :: (Lang) → (Lang) → Bool
sto a b = if a==b then True else sto’ a b

sto’ a b = case (unpack2 a, unpack2 b) of
(RoBaseType "bit", RoBaseType "natural") → True
(RoBaseType "natural", RoBaseType "integer") → True
(RoBaseType "negint", RoBaseType "integer") → True
(RoBaseType "posint", RoBaseType "integer") → True
(RoBaseType "integer", RoBaseType "rational") → True
(RoBaseType "rational", RoBaseType "real") → True
(RoBaseType "negreal", RoBaseType "real") → True
(RoBaseType "posreal", RoBaseType "real") → True
(RoBaseType "real", RoBaseType "complex") → True
(RoBaseType "imaginary", RoBaseType "complex") → True
(RoBaseType "complex", RoBaseType "number") → True
(RoBaseType "number", RoBaseType "element") → True
(RoBaseType "bool", RoBaseType "element") → True
(RoBaseType "char", RoBaseType "element") → True
(RoBaseType "bit", _ ) → sto (base "natural") b
(RoBaseType "natural", _ ) → sto (base "integer") b
(RoBaseType "negint", _ ) → sto (base "integer") b
(RoBaseType "posint", _ ) → sto (base "integer") b
(RoBaseType "integer", _ ) → sto (base "rational") b
(RoBaseType "rational", _ ) → sto (base "real") b
(RoBaseType "negreal", _ ) → sto (base "real") b
(RoBaseType "posreal", _ ) → sto (base "real") b
(RoBaseType "real", _ ) → sto (base "complex") b
(RoBaseType "imaginary", _ ) → sto (base "complex") b
(RoBaseType "complex", _ ) → sto (base "number") b
(RoBaseType "number", _ ) → sto (base "element") b
(RoBaseType "bool", _ ) → sto (base "element") b
(RoBaseType "char", _ ) → sto (base "element") b
(_, RoBaseType "top") → True
(RoBaseType "bottom",_) → True
(x,y) → False

-- subdomains... a record of the domain semi-lattice.

sdo a b = if a==b then True else sdo’ a b
sdo’ (RoDomainType "static")

(RoDomainType "null") = True
sdo’ (RoDomainType "state_based")

(RoDomainType "static") = True
sdo’ (RoDomainType "finite_state")

(RoDomainType "state_based") = True

112



sdo’ (RoDomainType "infinite_state")
(RoDomainType "state_based") = True

sdo’ (RoDomainType "discrete_temporal")
(RoDomainType "infinite_state") = True

sdo’ (RoDomainType "discrete_time")
(RoDomainType "discrete_temporal") = True

sdo’ (RoDomainType "continuous_temporal")
(RoDomainType "infinite_state") = True

sdo’ (RoDomainType "continuous_time")
(RoDomainType "continuous_temporal") = True

sdo’ (RoDomainType "frequency")
(RoDomainType "continuous_temporal") = True

sdo’ (RoDomainType "signal_based")
(RoDomainType "static") = True

sdo’ (RoDomainType "process_based")
(RoDomainType "signal_based") = True

sdo’ (RoDomainType "CSP")
(RoDomainType "process_based") = True

sdo’ (RoDomainType "pi_calculus")
(RoDomainType "process_based") = True

sdo’ (RoDomainType "trace_based")
(RoDomainType "signal_based") = True

sdo’ (RoDomainType "discrete_event")
(RoDomainType "trace_based") = True

sdo’ (RoDomainType "tagged_event")
(RoDomainType "trace_based") = True

sdo’ (RoDomainType "trusted_state_based")
(RoDomainType "trusted_state_based") = True

-----

sdo’ (RoDomainType "static") x =
sdo (RoDomainType "null") x

sdo’ (RoDomainType "state_based") x =
sdo (RoDomainType "static") x

sdo’ (RoDomainType "finite_state") x =
sdo (RoDomainType "state_based") x

sdo’ (RoDomainType "infinite_state") x =
sdo (RoDomainType "state_based") x

sdo’ (RoDomainType "discrete_temporal") x =
sdo (RoDomainType "infinite_state") x

sdo’ (RoDomainType "discrete_time") x =
sdo (RoDomainType "discrete_temporal") x

sdo’ (RoDomainType "continuous_temporal") x =
sdo (RoDomainType "infinite_state") x

sdo’ (RoDomainType "continuous_time") x =
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sdo (RoDomainType "continuous_temporal") x
sdo’ (RoDomainType "frequency") x =

sdo (RoDomainType "continuous_temporal") x
sdo’ (RoDomainType "signal_based") x =

sdo (RoDomainType "static") x
sdo’ (RoDomainType "process_based") x =

sdo (RoDomainType "signal_based") x
sdo’ (RoDomainType "CSP") x =

sdo (RoDomainType "process_based") x
sdo’ (RoDomainType "pi_calculus") x =

sdo (RoDomainType "process_based") x
sdo’ (RoDomainType "trace_based") x =

sdo (RoDomainType "signal_based") x
sdo’ (RoDomainType "discrete_event") x =

sdo (RoDomainType "trace_based") x
sdo’ (RoDomainType "tagged_event") x =

sdo (RoDomainType "trace_based") x
sdo’ (RoDomainType "trusted_state_based") x =

sdo (RoDomainType "state_based") x

-----

sdo’ _ (RoDomainType "null") = True
sdo’ x y = x==y

-------------------------------------------------------------

tysmatch (x:(y:xs)) = if x==y then tysmatch (y:xs) else False
tysmatch (x:[]) = True
tysmatch ([]) = True

unListing x = case x of
(RoDepProduct xs x) → xs

-------------------------------------------------------------

isDomain x = case unpack2 x of
(RoDomainType s) → True
(_) → False

-------------------------------------------------------------

boolsOrFacets (x:xs) = case (unpack2 x) of
(RoBaseType "bool") → boolsOrFacets xs
(a) → False
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boolsOrFacets ([]) = True

-------------------------------------------------------------

getPnames p = map (λa → case (unpack2 a) of
(RoParameter x y z) → x ::String

) p

getDnames :: [Lang] → [String]
getDnames d = map getDnames’ d

where
getDnames’ a = case (unpack2 a) of

(RoItem x y z) → x :: String
(RoAnnotatedDecl dec annots) → getDnames’ dec
(a) → error $ show a

-------------------------------------------------------------

--for replacing a tyVar throughout a type.

searchAndReplace x name rep = case unpack2 x of
(RoSubtype ty) → mkRoSubtype (searchAndReplace ty name rep)
(RoSetType ty) → tySet (searchAndReplace ty name rep)
(RoSeqType ty)→ tySeq (searchAndReplace ty name rep)
(RoMultisetType ty)→ tyMultiset (searchAndReplace ty name rep)
(RoDepProduct ys y) → tyRoDepProduct
(map (λa → searchAndReplace a name rep) ys)

(searchAndReplace y name rep)
t@(RoTyVar label) → if label==name then rep else pack t
(otherstuff) → pack otherstuff

-- --------

mapty f x = case unpack2 x of
(RoSubtype a) → tySubtype (f a)
(RoSetType a) → tySet (f a)
(RoSeqType a) → tySeq (f a)
(RoMultisetType a) → tyMultiset (f a)
(RoDepProduct xs x) → mkRoDepProduct (map (mapty f) xs) (f x)
(z) → pack z

-- --------

dregty :: ((Lang) → a) → (Lang) → [a]
dregty f x = case unpack2 x of
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(RoDepProduct xs x) → concat $ (map (dregty f) xs)++[[f x]]
(RoSubtype a) → dregty f a
(RoSetType a) → dregty f a
(RoSeqType a) → dregty f a
(RoMultisetType a) → dregty f a
otherwise → [f x]

-- --------

--replace :: (Lang, Lang) → Lang → Lang

replace this@(s,ty) v = case unpack2 v of
(Type) → pack Type
a@(RoBaseType str) → v
a@(RoSubtype exp) → mkRoSubtype $ replace this exp
a@(RoSetType exp) → mkRoSetType $ replace this exp
a@(RoSeqType exp) → mkRoSeqType $ replace this exp
a@(RoMultisetType exp) →

mkRoMultisetType $ replace this exp
a@(RoArrayType exp) → mkRoArrayType $ replace this exp
a@(RoDomainType str) → v
a@(RoDepProduct xs x) →
dp (map (replace this) xs) (replace this x)

(RoTyVar n) → if s==v then ty else v
(RoDesUnits xs) → mkRoDesUnits $ map (replace this) xs
a → error $ "not a good type to replace "
++ "through!λnλt " ++ (show a)

-- --------

nulltys = [tyElement,tyBool, tyChar, tyString, tyNumber,
tyComplex, tyImaginary, tyPosReal, tyNegReal, tyRational,
tyInt, tyPosInt, tyNegInt, tyNatural, tyBit, tyTop,
tyBottom, tyUnit, tyFoo]

isnullary x
| foldl ( | |) False (map (λy→ y==x)nulltys)

= True
| otherwise = case unpack2 x of

(RoTyVar _) → True
(RoDomainType s) → True
(_) → False

-- --------
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notIn :: (Lang) → (Lang) → Bool
notIn x y = case (unpack2 x,unpack2 y) of

(RoTyVar s, RoTyVar t) → s/=t
(RoTyVar s, y’) | isnullary y → True
(RoTyVar s, y’) → foldl ( | |) False (dregty (notIn x) $ y)

-- --------

genvar s = do
fv ← gensym s
return (tyVar fv)

istyvar x = case unpack2 x of
(RoTyVar _) → True
(_) → False

unisub :: (Lang,Lang) → Sigma → Sigma
unisub (s,t) tys =

let ls = map (replace (s,t)) (map fst tys) in
let rs = map (replace (s,t)) (map snd tys) in

zip ls rs

unify :: Sigma → Sigma → Sigma
unify v@((s,t):cs) ans =

if (sto s t | | sto t s) then (unify cs ans) else
if (istyvar s) && (s ‘notIn‘ t)
then if (istyvar t)

then (unify
(unisub (s,t) cs)
(((s,t)):(unisub ( (s,t)) ans))
)

else (unify
(unisub (s,t) cs)
(unisub (s,t) ans))

else if (istyvar t) && (t ‘notIn‘ s)
then if (istyvar s)

then (unify
(unisub (t,s) cs)
(unisub (t,s) ans)

)
else (unify
(unisub (t,s) cs)
((t,s):(unisub (t,s) ans))
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)
else case (unpack2 s,unpack2 t) of
(RoSubtype s, RoSubtype t) →
unify ((s,t):cs) ans
(RoSetType s, RoSetType t) →
unify ((s,t):cs) ans
(RoSeqType s, RoSeqType t) →
unify ((s,t):cs) ans
(RoMultisetType s, RoMultisetType t) →
unify ((s,t):cs) ans
(RoDepProduct xs x, RoDepProduct ys y) →
unify ((zip xs ys)++[(x,y)]++cs) ans
(dom, RoDepProduct xs x) →

unify ((pack dom, x):cs) ans
(RoBaseType "uninterpreted",a) → unify cs ans
(_) → error ("couldn’t unify... "++(show v))

unify [] ans = ans

A.3 TypeChecker.hs

This file takes the algebras written and puts them all into one algebra; then,

it defines the paramorphism over that algebra, and yields a simple term-to-type

function, typeof initEnv.

{-# OPTIONS -fglasgow-exts #-}

{-# OPTIONS -fno-monomorphism-restriction #-}

{-# OPTIONS -fcontext-stack=50 #-}

{-# OPTIONS -fallow-incoherent-instances #-}

module Rosetta.TypeChecker where

import Rosetta.Roast.Common
import Rosetta.Roast.All

import Rosetta.TypeChecker.Common
import Rosetta.TypeChecker.Alg
import Rosetta.TypeChecker.GenSymbolTable
import Rosetta.TypeChecker.Tests
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import InterpreterLib

import Regular.Functor
import Regular.Algebra

import Control.Monad.Reader
import Control.Monad.State
import Control.Monad.Writer
import Control.Monad.Identity
import Maybe
import Monad

-------------------------------------------------------------

-- NOTE: ’Lang’ is in AST_Lang.hs, and always alphabetized.

alg’ p =
( algRoConstructor p ) @+@
( algRoDataType p ) @+@
( algRoDecl p ) @+@
( algRoDeclValue p ) @+@
( algRoDesignUnits p ) @+@
( algRoExpr p ) @+@
( algRoImportSpec p ) @+@
( algRoMode p ) @+@
( algRoObserver p ) @+@
( algRoParameter p ) @+@
( algRoQName p ) @+@
( algRoTerm p ) @+@
( algRoType p ) @+@
( algRoTypeVar p ) @+@
( funitAlg )

to’ :: (SequenceAlgebra LangS Lang (m TyLang)
(SequenceAlgebraT LangS Lang (m TyLang) Identity),

MonadReader SyTa m,
MonadWriter Sigma m,
MonadState (Int,String) m) ⇒

Lang → m TyLang
to’ = para (λself → alg’ (inn self) )

{--when you want to add to the context, or want perusal to be able to

pipe in its efforts... --}
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to:: SyTa → Lang → TyLang
to syta s = let ctxt = (conjoin2Sytas syta initEnv ) in

case (runTCMonad ctxt (to’ s)) of
a@(((ty),st),sigwriter) →
foldr (λx→ replace x) ty (unify sigwriter [])

to2 s = case (runTCMonad initEnv $ to’ s) of
a@(((ty),st),sigwriter) →
foldr (λx→ replace x) ty (unify sigwriter [])

to3 s = s

typeof = to

constrs syta s =
let ctxt = (conjoin2Sytas syta emptySyta {--initEnv--}) in ctxt

constraints = constrs

-- stuff to run the tests ◦ ..
test = map (to emptySyta) t == answers
runem = zip (theints 1) (map (to initEnv) t)
results = zip answers $ map (to initEnv) t
resultsbynumber = zip (theints 1)

$ map (λ(a,b) → (a::Lang)==(b::Lang)) results
failures = filter (λ(a,b)→ b==False) resultsbynumber

theints x = x : (theints (x+1))
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